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Abstract

Artificial Intelligence is a big part of automation and with today’s technological advances, artifi-
cial intelligence has taken great strides towards positioning itself as the technology of the future to
control, enhance and perfect automation. Computer vision includes pattern recognition and classi-
fication and machine learning. Computer vision is at the core of decision making and it is a vast
and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques
built upon existing technologies to improve pattern recognition and neural network training, initially
motivated by a multidisciplinary effort to build a robot that helps maintain and optimize solar panel
energy production.

Our contributions detail an improved non-linear pre-processing technique to enhance poorly
illuminated images based on modifications to the standard histogram equalization for an image.
While the original motivation was to improve nocturnal navigation, the results have applications in
surveillance, search and rescue, medical imaging enhancing, and many others.

We created a vision system for precise camera distance positioning motivated to correctly locate
the robot for capture of solar panel images for classification. The classification algorithm marks solar
panels as clean or dirty for later processing. Our algorithm extends past image classification and,
based on historical and experimental data, it identifies the optimal moment in which to perform
maintenance on marked solar panels as to minimize the energy and profit loss.

In order to improve upon the classification algorithm, we delved into feedforward neural networks
because of their recent advancements, proven universal approximation and classification capabilities,
and excellent recognition rates. We explore state-of-the-art neural network training techniques
offering pointers and insights, culminating on the implementation of a complete library with support
for modern deep learning architectures, multilayer percepterons and convolutional neural networks.

Our research with neural networks has encountered a great deal of difficulties regarding hyperpa-
rameter estimation for good training convergence rate and accuracy. Most hyperparameters, includ-
ing architecture, learning rate, regularization, trainable parameters (or weights) initialization, and

so on, are chosen via a trial and error process with some educated guesses. However, we developed

iii
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the first quantitative method to compare weight initialization strategies, a critical hyperparameter
choice during training, to estimate among a group of candidate strategies which would make the
network converge to the highest classification accuracy faster with high probability. Our method
provides a quick, objective measure to compare initialization strategies to select the best possible
among them beforehand without having to complete multiple training sessions for each candidate

strategy to compare final results.

iv
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Chapter 1

Introduction

Theory and applications of computer vision are quite prevalent today, mainly because the increase
in computing power and developments in parallel computing have made possible to achieve the
high volume of computations required by old and new techniques to simulate, and, in some cases,
surpass, human-like behavior in recognizing and classifying signals such as images or sounds. Once
computers are programmed and learn to perform successful recognition optimally, massive amounts
of information can be reasonably mined, classified and logically arranged to free humanity of such
tedious tasks. This allows people to focus more on creative and scientific endeavors.

In this research, we develop novel algorithms and techniques built upon existing technologies to
improve pattern recognition and neural network training, specifically applied to signal and image
processing. The initial motivation was to improve pre-processing, segmentation and classic pattern
classification methods to apply them to a research project funded by the National Science Founda-
tion. The research project focused on a multidisciplinary effort to create a robot-server architecture
to clean and maintain solar installations. The results extend to applications beyond the focus of
the project and we developed enhanced techniques for software night vision for both grayscale and
color images. We developed techniques that allow spatial positioning for image capture, applied
classic pattern classification methods on captured images to detect the cleanliness of solar panels
and predict the optimal time to clean them and minimize the energy loss due to production drop
from dirty photovoltaic cells. We delved into feedforward neural networks because of their recent
advancements, proven universal approximation and classification capabilities, and excellent recogni-
tion rates, in particular, Convolutional Neural Networks as the state-of-the-art signal classifiers. We
studied the mathematics behind neural networks’ capability to learn patterns from examples and
the internal working of network structures.

Current research on neural networks focuses on incremental improvement in network convergence
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accuracy and time to learn or convergence rate (in number of epochs and number of samples per epoch
needed to converge) without sacrificing optimization. Our research with neural networks encountered
a great deal of difficulties regarding hyperparameter estimation for good training convergence rate
and accuracy. Most hyperparameters, including architecture, learning rate, regularization, trainable
parameters (or weights) initialization, and so on, are chosen via a trial and error process with some
educated guesses. One of the hyperparameters we studied was the weight parameter initialization
as a critical step during training and one of the most difficult choices to boost accuracy, or even
to start learning. Empirical evidence exists that some researchers have been able to train some
large networks better using one initialization technique over another, and while there is a consensus
on different techniques to initialize the weights, there is no formal evidence of one method being
better than another. Our contribution as part of this research is the development of the first
quantitative method to compare weight initialization strategies based on experiments designed to
estimate, among a group of candidate strategies, which would make the network converge to the
highest classification accuracy faster with high probability. Our method provides a quick, objective
measure to compare initialization strategies to select the best possible among them beforehand
without having to complete multiple training sessions for each candidate strategy to compare final
results.

Instead of experimenting on existing neural network and deep learning libraries, we created our
own neural network library in C++ using modern techniques of computation such as multi-core com-
puting, mass matrix and vector machine optimization libraries and coprocessor offloading to Many
Integrated Cores (MICs) and Graphic Processing Units (GPUs), with the purpose of understanding
the internal functionality and details and to fulfill our need to be able to monitor and tweak the
internal functionality of a neural network to fit our experiments at will. Our library was able to
stand on par with state-of-the-art libraries in comparable situations such as Google’s TensorFlow
and Intel’s Deep Learning libraries. We deployed our library to the National Supercomputer In-
stitute Cherry-Creek cluster to speed up computation on our experiments allowing us to complete
computations in hours instead of days.

In the next chapter we survey important previous work on image pre-processing, dark image
enhancement and histogram equalization variants. We continue with a survey on photogammetry,
solar panel technology and maintenance. We conclude the chapter with a preliminary survey of
neural networks and an in-depth look at their weight initialization strategies.

After the literature review, we dive into our findings regarding enhancement of poorly illuminated
images along with comparisons with the standard method of histogram equalization, ending the

discussion with striking results when our proposed algorithm is applied to color images.
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We follow the pre-processing treatment with our unveiling of the vision system for precise camera
distance positioning that was part of the robot Helios’ kit along with the night vision system provided
by our enhanced histogram equalization technique. We discuss the mathematics behind the model
followed by an overview of the solar panel cleanliness classification system. We end the chapter by
explaining the details of our maintenance schedule algorithm, tied to the classification system in
order to minimize costs and loss of energy.

The details that went into the construction of our neural network library are explained in the
next chapter. We survey modern techniques and state-of-the-art enhancements to train multilayer
perceptrons and deep architectures of convolutional neural networks along with our own implemen-
tation details, improvements and optimizations with the goal of creating a worthy library that stands
on par with popular neural network libraries. The resulting code is listed in the appendices.

The motivation for the creation of our own neural network library was to be able to train a
network to improve upon the classification for the solar panel maintenance project. However, the
time-consuming trial and error approach to hyperparameter selection to train the networks led us
to research and formulate the quantitative comparison method explained in the last chapter for
the selection of parameter initialization strategy in order to improve neural network accuracy while

saving crucial training time and resources.
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Chapter 2

Literature Review

2.1 Non-linear Equalization for Poorly Illuminated Images

Histogram equalization is an image processing technique often used to enhance contrast. It works
by expanding the histogram of an image to cover the whole dynamic range.

Even though standard Histogram Equalization (HE) offers a direct alternative for the enhance-
ment of dark images, in many occasions the resulting images are too bright, or washed out, thus,
several researchers have proposes improvements upon this technique in general, and for the purpose
of night vision.

Several variations to the HE algorithm exist. Many of these try to increase the contrast and
dynamic range of an image while preserving the brightness or expected intensity value with the
purpose of applying it to images with low contrast, but not specifically for poorly illuminated
images.

In their work “Contrast Enhancement Using Brightness Preserving Bi-Histogram Equalization”
[34], the authors explain a popular variation of standard HE, called Bi-Histogram Equalization (Bi-
HE). This is one of several variations to HE that aims to maintain the image average intensity
while expanding the dynamic range. Bi-HE seeks to divide the image histogram into two histograms
separated by the mean value. Standard HE is then performed on each sub-histogram. Methods
like this are introduced in an attempt to make HE viable in consumer electronics by lessening the
artifact of brightness change in an image after equalizing it.

Chen and Ramli [10] propose a variation of Bi-HE where they apply Bi-HE recursively. Each
new section of histogram delimited by its bounds or means is subjected to Bi-HE once again, and
SO on.

Another variation divides the image into regular regions of equal area and applies HE to each
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region so that the variance of the intensity is smaller in the locality and does not affect the result
as drastically as the global variance [86]. The result, however, is a patchy image with unnaturally
bright areas.

While histogram equalization methods that preserve brightness could be useful to enhance images
with poor contrast, they may not be as appropriate to utilize for poorly illuminated images because
the intention is to increase their contrast as well as to brighten them up. These methods also tend to
suffer from the same downside as standard HE when applied to dark images, still providing washed
out results.

However, histogram equalization has only been used in a limited amount of work as a night vision
alternative. Many authors have also realized that standard HE and variations used in other types
of images need to be modified in order to provide better results for dark images.

In his thesis work [69], Teo realizes that HE, or one of its variants, can be applied to night vision
images to enhance their contrast and improve further on the quality of visuals. The author, however,
applies the technique to images already captured with night vision or thermal imaging devices, so,
the effect of HE on these images is not as pronounced as when applied directly to the original dark
images.

In their paper “New image enhancement algorithm for night vision,” [83] the authors propose
a combination of HE and contrast enhancement to improve upon standard HE when used for dark
images after realizing the unnatural increase in brightness in resulting images when applied for night
vision.

Sapkota [63] shows in his work the application of the concept, already explaining the possibility
of building a capture device that utilizes HE to provide night vision for low light environments.
He goes on to explain Incremental Histogram Equalization to look for the optimal upper bound of
dynamic range expansion of the histogram where the resulting image would more closely resemble
the well illuminated version. The author, however, still uses the standard HE algorithm to obtain
the night vision result, just varying the upper bound intensity to find the peak of signal to noise
ratio.

In most of these papers, the variations to the standard HE provide some improvement on the
resulting images, however, almost none addressed the issue that HE, in fact, does not expand the

histogram to the whole dynamic range for poorly illuminated images as it does for better lit images.
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2.2 Vision System and Optimization for Solar-Panel-Cleaning Robot Ar-

chitecture

Solar power plants are currently growing in number across the globe. They are a source of renewable,
clean energy that can be used to significantly reduce the ecological impact and increase the efficiency
of production of electrical energy.

Solar power plants incorporate large arrays of solar panels. However, today, many individuals
have access to solar panels that can be used to produce enough electricity to power a house. Research
in the area is abundant right now in pursuit of more efficient ways to collect the solar energy.

Solar panels are collections of interconnected solar cells (also called photovoltaic cells) that absorb
the energy of incident light, converting it into an electric current through a phenomenon called
“photovoltaic effect.”

The photovoltaic (PV) effect is directly related to the photoelectric effect. In summary, the
electrons on certain materials can be excited by incident light. Semiconductor materials, such as
silicon, are usually used. When an electron in the valence band of a crystal’s atom absorbs enough
energy from incident photons, it jumps to the conductive band and becomes free, ionizing the source
atom with a positive charge. Under the presence of an electric field, the separated electrons and
ions are attracted to the opposite charged plates, creating an electromotive force. If a circuit is
connected to these plates, an electric current flows. As light continues to excite the material, the
ionization is maintained and the electricity continues to flow [5].

Clearly, if more light reaches and gets absorbed by a PV cell, then, more atoms get ionized in the
crystal and more electrons become free. As a result, the potential of the electromotive force created
by the separation of more negative and positive charges increases as well as the electricity flowing
through the circuit.

The basic structure of a PV cell is designed to allow the maximum light possible to reach the
excitable material, maximizing the absorption of photons and minimizing reflection. Solar cells rely
on a layer of antireflection coating on the front of the cell to reduce reflection of the incident light. On
simple cells, light rays enter through the front surface and, if not absorbed, leave through the rear.
More sophisticated designs extend the path of light inside the cell to improve absorption through a
process called “light trapping” [51].

Sunlight is comprised of ultraviolet, visible, and infrared light. While red light has the longest
wavelength in the visible spectrum, infrared light is even longer. Therefore, infrared and red light,
both having the larger wavelengths compared to the other components of the incident light, penetrate

the glass more readily and produce the most amount of electricity. Meanwhile, blue and violet light
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suffer the most absorption by the coating of the cell, not the cell itself, and offer little contribution
to the production of electric energy in comparison.

As we said earlier, the amount of energy generated by PV cells is directly proportional to the
amount of light absorbed. And the more light directly illuminating the cell, more photons reach the
material, and more light can be absorbed.

Now, the amount of light striking the solar cells on a solar panel array is dependent on many
factors, including the month of the year, day of the month, time of day, weather conditions, and
other locationdependent circumstances. Most weather conditions that can limit the amount of light,
and thus, the amount of electricity generated, cannot be avoided. Other causes, however, such as
light obstruction due to other objects, broken cells and overall cleanliness or dirtiness of the panels,
can be dealt with in order to maximize the amount of light reaching the solar cells.

Many solar power plants are established in areas with arid climates due to the low humidity and
clear skies year round. Dust and sand storms are common in these climates and the dust gradually
settles on the glass surface of solar panels, slowly decreasing the amount of light that reaches the
solar cells. The loss of light energy depends on the amount, size, and chemical composition of the
dust [62] [49]. In terms of time, trees are sparse in arid climates, and during migration in the fall
and spring, birds use solar farms as rest areas; therefore, the solar panels become dirty with bird
excrement. In general, this is a problem throughout the entire year. Bird droppings are worse than
dust, because no light passes through them.

Deposits on a dirty panel reflect, scatter and obstruct the incident light, reducing the amount
of photons that can penetrate through and reach the PV cells, consequently decreasing the amount
of electricity produced [62]. To position the capture system in order to properly obtain images of
solar panels and to determine whether they are clean or dirty, we applied some photogrammetric
techniques.

Photogrammetry (photo-light, gram-drawing, metry-measuring) has a Greek derivation, and is
the practice of determining the geometric properties of objects from photographic images. It is dated
back to nineteenth century when film photography started. The process is as simple as getting the
distance between two points on a plane parallel to the photographic image plane. Work in stereo
photogrammetric image enhancement, image processing, and stereo vision started in the latter part
of the last century.

Our work in this area pertains to a robot vision system using some photogrammetric techniques
[87][73], initial classification algorithm utilizing Mahalanobis distance to detect dirty solar cells
[87][52][85] and a photovoltaic cell output optimization algorithm that estimates the ideal time to

clean solar panels to minimize impact in energy production [47].
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2.3 Neural Network Details

Feed-Forward Artificial Neural Networks have been around since the 1960s. However, recent ad-
vancements in computing power, parallelization and increasing computer memory have allowed for
the scarce old techniques to be implemented, improved upon and be quite successful in pattern
recognition and classification, permitting deeper networks and new architectures to appear and
thrive.

Classic fully connected, feed-forward artificial neural networks present an input layer or retina
with, usually, no processing steps other than to prepare and organize the input data for the the rest
of the network. The input layer is followed by, at least, one hidden layer of non-linear units, also
called neurodes or neurons due to their mathematical model and simulation of real-life neuron cell
behavior. The hidden layers are followed by the output layer which produces the final output of the
network in whatever desired format, usually by applying similar processing and some non-linearity to
its input, much like the hidden layers operate. The non-linear activation function in classic networks
is usually set to the log-sigmoid or hyperbolic tangent as continuous, differentiable alternatives to
the original McCulloch-Pitts nodes [50] in order to facilitate training [59][56]. Modern architectures,
however, are not limited to fully connected layers or to sigmoid activation units.

While fully connected layers are often integral parts of the newer architectures, modern net-
works possess layers with specific connections. Convolutional Neural Networks such as LeNet [42],
GoogLeNet [31], Inception Network [68] and others contain sparsly connected layers known as convo-
lutional layers that act as feature filters. These networks are considered deep architectures because
instead of having a couple of fully connected hidden layers, they figure from 5 to 14 or even more
combination of layers, from convolutional to pooling to fully connected layers. Recurrent Neural
Networks, also considered deep networks, present another type of architecture with feedback loops
that form directed cycles inside the network, allowing it to show temporal memory behavior, such
as the Long Short Term Memory based networks [28], a variant of the Recurrent Neural Networks
that aims to reduce or eliminate the vanishing gradient problem [35].

It has been shown that neural networks with continuous non-linear and non-polynomial activa-
tion units in, at least, one hidden layer possess the universal approximation property [29][45]. While
classic units feature sigmoid or hyperbolic tangent functions as non-linear activations, other activa-
tion functions have been researched over the years and applied successfully to deep architectures.
Rectified Linear Units (ReLU) use the identity function for positive input values and zero for neg-
ative input values as the non-linear activation [21]. Variants to avoid dead ReLU units (units that
stop learning) such as leaky ReLU [46] and the softplus function [17] have shown improved results.

Recent studies have brought Exponential Linear Units (ELU) as another alternative in attempts to
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fight some of the drabacks of ReLU units [12]. Other seminal activation functions that appeared as
alternatives to the sigmoid were the Radial Basis Function [57] and an alternative non-sigmoidal ac-
tivation proposed by Chandra, Ghose and Sood that behaves similarly to the Radial Basis Function,
but involves no exponential calculation, potentially helping on optimization of the training process
[9].

The most commonly used method for training neural networks is the back propagation algorithm.
Back propagation is a variant of gradient descent optimization that uses first order derivatives
to compute the error between a target function and the approximation. The error is utilized to
change the parameters of the approximation using the steepest slope to steer it towards the known
function [61][60][40]. The majority of today’s state-of-the-art neural networks use this algorithm or
some variant or extension with modifications because of its ease of computational speed and space
optimization and proven results [31][68].

Other methods have been proposed as learning algorithms, especially second order methods to
increase convergence rate [2][7][58]. In terms of convergence rate, it has been shown that second
order methods converge faster than gradient descent based training and are among the algorithms
with higher convergence rates [43]. Another appeal to second order methods, other than their proven
superior convergence rates is the fact that many second order methods do not have the learning rate
hyperparameter and adjust themselves depending on the shape of the error surface. A popular
method for second order training is Newton’s method and variations such as quasi-Newton methods
or conjugate methods [24][48][3].

Despite boasting superior convergence rates, second order method are rarely used for practical
applications in neural network training. Their drawback is that they are not practical for large
neural networks trained in batch mode [8]. During back propagation, the explicit computation of
the Hessian matrix and its inverse are quite expensive, reaching over 3 TB of memory needed to hold
these matrices for a 1 million weights network. All of this already piles on the actual computational
load of the matrices’ elements. So, while the number of epochs needed by second order methods is
less than stochastic gradient descent, the computational complexity, time and memory required can
become prohibitive. The work done in “Large Scale Distributed Deep Networks” [14] concludes that
second order methods can outperform stochastic gradient descent with AdaGrad adaptive learning
rate procedure given enough computing power, but not for much. However, for modest systems with

less than 2000 cores, stochastic gradient decent is the only practical solution.
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2.3.1 Neural Network Weight Initialization

Despite all these new variants of the classic approach to fully connected, feed-forward neural net-
works, the challenge of selecting a good distribution of initialization parameters that would yield the
best learning results persists. Various techniques are used to initialize different architectures and
units depending on their non-linearity. Based on the activation function, the initialization strategy
varies and there are different strategies for the same activation and architecture.

Most texts for beginners today indicate that a “good enough” weight initialization for sigmoid
activation neurons (such as log-sigmoid or hyperbolic tangent functions) is a uniformly distributed
random value in the interval (—1,1) [70][59][56]. Further details explain that better results are

obtained by initializing each weight for the connection from neuron j to neuron 7 as:
w;; = uniform(—1,1) - « (2.1)

where the coefficient o € (0,1) is called the scaling coefficient. It is usually recommended to pick
small coefficient values. The closer this value is to zero seems to translate into better convergence
rates. Typical coefficient values range between 0.01 and 0.5.

The SCAWT method [16][13] proposes a per-layer initialization for networks with a single hidden

layer where:

1.
Qw13

V2
1.3
Vv1+03- fanian;

where a(!) is the scaling coefficient for layer [ and fan_in; is the number of inputs to neuron i.

(2.2)
a® —

Nguyen and Widrow [55] suggest that since each hidden node computes a slice of the final function
that the network tries to approximate, a good approach is to initialize the weights of a node to a
uniform random interval dependent on the magnitude of the vector of weights for the node over the
input space. That is, given the number of hidden nodes H and the vector or weights for node i is

W;, then the input interval should be divided in portions of size equal to:
o = HY/fen-ini (2.3)

where each weight should be initialized to a uniform random number in their portion. The bias
should be initialized to uniform(—1,1) - a.

Other sources [41] [20] have found that better convergence rates result if the scaling coefficient
is set as:

a= fcm,z'ni_l/2 (2.4)
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or

o= 4\/6 (fan_in; + fan_out;)” " (2.5)

where fan_out; is the number of neurons that use the activation of neuron i as input. The idea is
based on the nature of sigmoid-like activation functions f(z), such as the hyperbolic tangent and
the sigmoid f(z) = 1—1—%’ where e is Euler’s constant, that saturate (i.e. f(x) approaches an
asymptote) for |z| > 1, while approaching a linear function elsewhere. Neurons with larger number
of inputs should have smaller weights to avoid saturation when, at least, half of the inputs are set
[4].

In their work, Sodhi, Chandra, and Tanwar [67] propose a variation on the Nguyen and Widrow
method to initialize sigmoid units in which they also section the weights for the i-th unit in layer [

with a total of N hidden neurons by computing the sections as such:

M
w;; = uniform (—a +M(GE—-1)— -
o (2.6)
—04+M(i—1)+2>
2
where M = NTal’ with @ € (0,1) as the scaling coefficient. This results in weights for a single

unit in the range (—a, a), but each weight is initialized in its own non-overlapping portion of the
range.

Another method insists on initializing the weights using a random Gaussian distribution as in:
w;; = gaussian_random(y, o) (2.7)

where gaussian_random ~ n (u,0) is a normally distributed random value, u is the mean and o is
the standard deviation. The suggested values are u = 0 and o € (0, 1] [56], with smaller values of
standard deviation offering better results [54].

In his book [56], Nielsen offers an intuitive explanation on why smaller standard deviations
have better convergence rates and reduced error. He suggested that if we have fan_in; inputs
to the neuron 7 with a sigmoid activation function, where each weight was initialized as w;; =
gaussian_random(0, 1), assuming that, at least, half the connected neurons fire with a value of 1,

ni
then, the value of the local receptive field S; = Z wj;x; (ignoring the bias) has a normal distribution

3=0
of the form n (O7 \/fan,ini). This means that about 68% of the values of S; (input to the sigmoid)

will be in the range (—+/fanin;,/fanzin;) with fan_in; >> 1, and even worse, about 27% will
be greater than /fan_in;. In general, more than half the time, the input to the sigmoid will be
much greater than 1 making f/(S) ~ 0 as depicted in Figure 2.1, saturating the neuron. The

11
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back propagation learning algorithm depends greatly on the value of the derivatives to compute
how weights should change. Since the derivative of a saturated neuron evaluates close to zero, the
resulting weight change will also be close to zero. Applying these small changes to the neuron’s
weights will have little effect on the neuron activation, thus slowing down learning.

Nielsen [56] and Glorot [20] suggest that to ensure S; ~ 1n(0,1), a better approach is to make
the standard deviation in the Gaussian initialization:

1

This method is commonly known as Xavier initialization [20] .

The goal in all these studies is the same: to avoid the saturation of sigmoid neurons to improve
learning speed and convergence rates.

Initializing parameters for non-sigmoid units also has several variants and as many challenges
as sigmoid units with specific attention to details. ReLU and variants to ReLU have been found to
benefit from Xavier initialization technique in equation 2.8 with the added measure of initializing
the bias of the unit to 1 to avoid early death of the neuron [26]. Simonyan and Zisserman [66]
explain how they had to train shallower versions of their deep network and use the obtained weights
to initialize deeper versions in a progressive manner.

Other parameter initialization methods try to perform a coarse approximation to the final solu-
tion and then use the approximation result as the initialization values for the neural network instead

of randomly set the initial weights [59]. One such method is initial weight selection with genetic

-6 -4 -2 I 2 4 6

Figure 2.1: Sigmoid function and its derivative.

(Red) Sigmoid function; (red) derivative of the sigmoid. Notice that as the sigmoid approaches its asymptotes
y =1 and y = 0, the derivative approaches y = 0.
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algorithms.

Genetic algorithms are a class of search and optimization algorithms based on an analogy to
natural evolutionary mechanisms. The basics of a genetic algorithm is “survival of the fitest” where
generations of results are compared using some cost function that decides which “individuals” are
closest to the actual result and thus should continue existing. Along with some rarely introduced
“mutations,” the longest-living individuals live long enough to pass on their traits to the new genera-
tions in hopes that the combination of good enough approximations will result in better “offspring,”
eventually converging to a global maximum (or minimum, depending on the specific problem) guided
by the process of “natural selection” enforced by the cost function [59][53][15].

There are many details for a genetic algorithm, but, theoretically, an initial approximation of
the neural network weights using a genetic algorithm would steer the hyperplanes defined by each
neuron on its input hyperspace towards the global optima. One main disadvantage of the algorithm
is the nature of the running process that involves the level of approximation. The genetic algorithm
needs a large amount of computation and storage space to evaluate a large population, thus running
the algorithm for too long may hinder the whole training performance by attempting to approximate
the solution too much. This overuse steps over the neural network training that is being initialized,
and takes almost as much time as the neural network training itself. On the other hand, not
enough approximation may result in an initialization that may be not good enough and even lead

to divergence during training [59].
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Chapter 3

Improved Non-linear Equalization

for Night Vision

It is well known that histogram equalization (HE) is a method utilized in digital image processing to
enhance the contrast of an image. It works by expanding the dynamic range of the image histogram.

In the histogram for an image with poor contrast, it can be seen that all pixels are clustered
close together around a few intensities. After applying histogram equalization to the image, it is
observed how the pixels are no longer clumped together, but their intensities have been spread,
trying to expand over the whole range of the histogram. This increased distance between intensities
translates in an increased contrast for the image as it can be seen in Figure 3.1.

Note that for this discussion, it is assumed, unless otherwise specified, that digital images have
been converted to grayscale using the intensity value of each pixel, also known as luma or Y compo-
nent in the YUV color space, computed from the RGB color space as standardized by International
Telecommunications Union in BT.601-7.

HE accomplishes its goal by applying a non-linear transformation to the image in question. It
computes the cumulative distribution function (CDF) of the histogram of the image, and then uses
it as a look up table for the new pixel intensity values in the resulting image. Algorithm 1 shows
the definition of the classic HE algorithm [22].

Now, notice that the histogram for images captured with commercial digital cameras under poor
illumination conditions is similar to that of an image with low contrast, but the intensities are closer
to zero (see Figure 3.2).

If HE is applied to poorly illuminated images, the result is a clearer picture. The little energy

captured is amplified, lighting up the original image, and making the shapes visible to the human
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Figure 3.1: Poor contrast image before and after equalization.

(a) original image; (b) image after histogram equalization; (c) histogram of image a (notice how most pixels
are clustered around a peak intensity);. (d) histogram of image b (notice how the intensities have been
spread apart).

eye (see Figure 3.3).

It is clear that if image capture devices are equipped with means of detecting low illumination
and small dynamic ranges in the histogram of the capture, the subsequent captures can be subject
to some variant of HE to improve contrast and effectively perform night vision via software. Such
devices can be used as an alternative option to current and more expensive night vision devices such
as infrared or thermal cameras and to improve current camera technology, ubiquitous in automobiles
[64][65], cell phones and other wearables. These cameras can also be very useful for surveillance,
nocturnal observations such as wildlife and deep ocean exploration, medical imaging enhancement,
search and rescue, and even space exploration.

However, after several experiments, it can be noticed that HE fails to expand the histogram to
the whole dynamic range in dark images. Observe that an undesired artifact of applying HE as an
alternative to enhance poorly illuminated scenes is the washed out, overly bright nature of the result.

The reasons for this behavior were determined and a variation of the algorithm was developed that

15
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Algorithm 1 Classic Histogram Equalization Algorithm

1: Let I be the original image.
2: Let I(i) be the intensity of pixel ¢ in the image. 0 < I(i) < Xj. X}, is the upper bound of the
intensity. Typically X = 255.
Let N be the number of pixels in I.
Let H be the histogram of I, i.e. H(x) is the number of pixels in I such that I(i) = x.
H(zx)

Let f(x) = T be the probability function for a pixel in I to have intensity .

6: Let F(x) = Z f(n) be the CDF for f(z).
n=0

Ut

7: Then, the res:ﬂting image I is defined as I'(i) = X}, - F(I(7)).

results in sharper images with better contrast where the whole range of the histogram is utilized.

3.1 Intensity Weighed Histogram Equalization

Observe how the result from applying HE to a dark image usually looks washed out, and overall,

too bright (see Figure 3.3), making some details close to the higher intensities practically indistin-
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Figure 3.2: Image captured with poor illumination and its corresponding histogram.

Notice how the intensities are clustered together, akin to an image with poor contrast.
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Figure 3.3: Resulting image after applying Standard Histogram Equalization.
This is the result of applying HE to the poorly illuminated image from Figure 3.2.

guishable. This is one of the undesired artifacts introduced by the equalization process. Studying
the histograms of resulting images closely, the cause of this undesired effect can be identified and
the technique can be adjusted accordingly.

On dark images, the zero and close to zero intensities are predominant, and their effect is what
causes the phenomenon highlighted in the histogram in Figure 3.4. Applying classic HE to most low
contrast, poorly illuminated images will cause this effect. Notice from the definition of Algorithm 1
that if there are pixels with zero intensity, then F'(0) = u > 0. So, in the new image all pixels will
be I'(i) > u - Xj. This means that the gap highlighted in Figure 3.4 is of magnitude v intensities.
The main problem with this incident is that classic HE will not map the pixels successfully to the
whole dynamic range of the histogram when applied to dark images. Also, no matter what, pixels

that would actually have zero intensity, will be given an artificial value.
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Figure 3.4: Lapse in intensities before the lowest intensity appears.

This lapse in in the histogram for an equalized poorly illuminated image using classic HE causes the standard
algorithm not to map successfully the pixels to the whole dynamic range of the histogram.

Intensity Weighted Histogram Equalization (IWHE) is the proposed solution to this problem. It
is a variation of the standard HE, and it is also a global equalization method (i.e. it operates over
the whole image instead of smaller regions). The main modification in IWHE consists of replacing

the computation of the resulting image with the formula:

I'(i) = X} - min F(I(z))%, 1 (3.1)

Where 0 < limitY < X}, is the intensity value where a desired percentage of the pixels have
already appeared.

Experimental results suggest that the best quality images are obtained when the value for limitY
satisfies:

| limaty
09 < ;::0 H(n) < 0.99 (3.2)

That is, limitY is the intensity value in the histogram where 90% to 99% of all pixels in the
original image have been accounted for. The smallest intensity where 100% of pixels have been
counted is ideal to spread all pixel intensities across the whole dynamic range (0, X}), but the
image may still be a little dark because there is usually a small amount of pixels spread among the
intensities after 99% of pixels have been counted. The outlying 1% of the pixels should be set to
maximum intensity while spreading the rest.

The parameter limitY, within reasonable values, can be used, in effect, to control the brightness
18
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of the resulting image. It inversely affects the overall brightness. Larger values offer more spread of
the intensities, but reducing the brightness. Smaller values increase the brightness, but can cause

loss of information because too many pixels will be moved to full intensity.
1(i)

limitY

the normalized weight of the pixel intensity when expanding the dynamic range of the histogram.

The expression used in the new formula to compute the resulting intensity, considers
The result, as seen in Figure 3.5, is an image that looks more natural, no longer washed out, more
detailed, and arguably less noisy than its classic histogram equalized counterpart. Even the text
and bar codes engraved on the chip are visible and readable. Observe that the resulting histogram
has the values spread over the whole range instead of starting with a constant gap, and the pixels
are distributed over more intensities. The new equalization also ensures that pixels with originally

zero intensity, remain at zero. Black pixels had no energy captured by the camera, and thus it is
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Figure 3.5: Intensity Weighted Histogram Equalization.

(a) Intensity Weighted Histogram Equalization of poorly illuminated image from Figure 3.2; (b) classic
histogram equalization of same image for comparison; (c) histogram for image a.
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artificial to give them values too high. The the new histogram maintains a familiar shape when

compared to the original dark image as well. This result was achieved after applying IWHE with a
limitY

limitY that satisfies the equation N Z H(n)=0.98

n=0
3.2 Enhanced Intensity Weighed Histogram Equalization

As shown in Figure 3.5, when a poorly illuminated image is enhanced with IWHE, the resulting
histogram has expanded to take over the whole dynamic range and it retains a shape similar to the
original image histogram, thus giving the resulting image a more natural look.

Note that the resulting histogram is still a comb containing gaps between intensity values giving
the image sharp jumps in intensity among pixel regions. To improve upon this, the pixels can be
distributed around their representative intensity value in a normal-distribution-like pattern.

Buckets are created around each individual intensity in the resulting histogram of IWHE. For
each bucket, the left limit is defined to be the value halfway between the representative intensity
and the neighbor intensity to the left. The right limit is defined in a similar manner. Afterwards,
the limits of each bucket are extended based on its size to overlap with adjacent buckets (i.e., larger
buckets receive a larger extension to each side). See Figure 3.6.

The Ng vicinity of a pixel p is the collection of pixels (including p) in the 3 x 3 matrix of pixels

centered at p. The IWHE result is passed through a filtering mechanism where a new intensity value
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Figure 3.6: Depiction of a bucket around a representative intensity.

Strict bucket limits are the halfway values between intensities. The extended bucket is the final bucket and
is computed by adding the bucket extension to each side of the strict bucket, extending the boundaries to
achieve overlap between adjacent buckets. The representative intensity in this example is 96.
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I1(p) is computed based on the intensity of the pixels in the Ny vicinity of p (for the experiments,
the average of the intensities was used, but any other filter that can spread the values in the bucket

as defined works as well):

Li(p) = f (I(Ns(p))) (3.3)

Then, the range R delimited by min(Z(p;)) and max(I(p;)) is mapped linearly to the range R’
for the bucket corresponding to the intensity of p. The intensity value for p in the final image, I'(p),
is the value I (p) mapped from R to R’

I'(L(p) : % — R (3.4)
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Figure 3.7: Result of applying enhanced IWHE to the image in Figure 3.2.

Notice how the histogram distribution has values over the whole range without holes. The image looks
even clearer than the non-enhanced result.
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Figure 3.7 shows the final result and histogram obtained after applying this method to the dark
image in Figure 3.2. The images enhanced with this method present reduced noise on areas where

uniform intensity is expected due to the attenuation of high frequency regions.

T1-89 Titanium

(e)

Figure 3.8: Visual comparison between standard HE and Enhanced IWHE.

Images are arranged in pairs where the left image of the pair was obtained through the application of
standard HE to a poorly illuminated scene and the right image was obtained through the application of
Enhanced IWHE to the same image. (a) book; (b) the moon (original photo obtained from NASA website);
(c) marker; (d) circuit board; (e) computer keyboard.
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3.3 Experimental Outcomes

A collection of pictures was captured with two different commercially available cameras with no
night vision capabilities under poor light conditions without applying flash. The variety of images
included night time landscapes as well as objects captured in a closed room without illumination.
Figure 3.8 shows a visual comparison between the application of HE and enhanced IWHE to
improve some of the poorly illuminated images captured. The original images are omitted because
their poor illumination offers no meaningful detail. With both cameras, the obtained pictures were
nothing more than dark images much like Figure 3.2. Notice how images reconstructed with enhanced

IWHE retain a more realistic look and details than their washed out, surreal HE counterparts.

3.3.1 Enhanced IWHE and Color Images

While advanced studies can be conducted for color images regarding equalization and enhancement,
the results of applying standard HE and enhanced IWHE to color images are striking. Figure 3.9
shows the comparison between the two methods. The image in (a) shows the captured scene with
lights turned on. Image (b) is the same scene with lights turned off resuling in very little energy
captured. The histogram of (b) looks very similar to the histogram of Figure 3.2. Image (c) was
obtained after reconstructing (b) using the standard HE method. Image (d) was constructed with
our enhanced IWHE. Notice how the details, shape and colors of the pen and the whole scene look
more natural and closer to the illuminated image after reconstruction using enhanced IWHE instead
of the washed out and artifficially colored result of standard HE.

To obtain these images, we applied each discussed technique to each color channel, then the
resulting channel intensity was merged with the other resulting intensities to form the final image.
For example, from the original image with color channels RGB, we extracted the red intensities
for each pixel in R and applied the equalization algorithm, obtaining a new intensity map R’. We
repeated this process to obtain the green G’ and blue B’ results. The new image was formed by

combining the computed channels R'G’'B’.

3.4 Results

Histogram equalization is an inexpensive method to increase the contrast in an image that can be
used to enhance visibility in poorly illuminated scenes, effectively providing night vision capabilities.
Although, dark images receive improved lighting when equalized, the results look washed out and
unnatural, due to the concentration of pixels with zero intensities, and their histogram shows a

comb-like shape with large gaps between intensities. The introduction and application of enhanced
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(c) (d)

Figure 3.9: Comparison between standard HE and enhanced IWHE for color images.

(a) well illuminated color scene for comparison; (b) scene a captured with poor illumination; (¢) poorly
illuminated color scene after standard HE reconstruction; (d) poorly illuminated color scene after enhanced
IWHE reconstruction.

Intensity Weighted Histogram Equalization as a global equalization technique tackles these problems
by considering the normalized weight of each pixel when equalizing the image, expanding the his-
togram to utilize the whole dynamic range, producing crispier, more natural looking, more detailed
and less noisy results than standard histogram equalization for dark images.

This technology can be embedded in capture devices that engage Enhanced IWHE when a small
dynamic range is detected on the input image histogram, with values clustered close to lower intensi-
ties, as a less expensive alternative to other night vision technologies, such as infrared cameras. This
will provide enhanced images from captures in low light environments, useful in cameras employed
for surveillance, driving, search and rescue, observation of wild life at night or deep ocean, medical

imaging enhancement, and many others.
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Refer to appendix A for the code implementation of enhanced Intensity Weighted Histogram

Equalization in C#.
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Chapter 4

Vision System and Optimization
for Solar-Panel-Cleaning Robot

Architecture

The energy produced by solar panels keeps increasing yearly. Silicon solar panels produce by Pana-
sonic have 22.8% efficiency, making solar panels an economically viable alternative to traditional
power. Companies like First Solar it has converted 22.1% of the sunlight energy into electricity
using experimental cells made from cadmium telluride. New semiconductor technologies based on
Gallium Arsenide and Indium Gallium Nitride (inGan) promise a major improvement over silicon
solar panels. Also multi-junction solar panels have higher production of electric energy. Gallium
nitride Solar panels are relatively inexpensive, they last for a considerable amount of time, and ev-
ery year we see new large scale installations as well as smaller for houses and commercial buildings.
Many of these large scale installations are in desert environments, where strong winds blow sand
and dust onto the panels inhibiting the energy productions. In addition to that birds migrating
from colder to warmer climates choose the solar panel sites as a resting place and the bird droppings
on the panels inhibit the energy production. Also small animals with sharp teeth roaming on the
solar panel site at night, or using the space under the panels to protect themselves from the hot
summer days and the cold winter nights cut the cables with their sharp teeth thus disabling the
panels. Finally vandals throwing stones and other objects through the fence could damage the glass
or other parts of the panels.

Having a maintenance crew to look after the panels is an expensive proposition which introduces

human problems.
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The robot “Helios” is part of the research project funded by the National Science Foundation.
Its purpose is to inspect every panel, as well as its cable connections, and decide if the panel needs
cleaning or not.

All the pertinent information, which includes the panel ID, and the details related to the panel
status are transmitted wireless to a file server and stored in the data base. For each panel needed
cleaning the robot returns during the night when the panel does not produce any energy and cleans
the panel.

The robot (Figure 4.1), consists of a mechanical component, an electro-mechanical component,
an electronics system, and a software suite.

The mechanical and electromechanical parts consist of an all-terrain vehicle, two electric brushless
motors, a telescopic vision system, and telescopic cleaning system with a brush, stepper motors
controlling the telescopic vision system, and the telescopic vacuum system, and a small vacuum
system with a brushless electric motor. The vacuum system traces the solar panel from top to

bottom and cleans it.

Figure 4.1: Prototype of the robot Helios.

The robot features the folding telescopic support of the vision system consisting of four cameras in a cross
configuration and a noninvasive laser.
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The software consists of a scalable operating system, an intelligent vision system with pattern
recognition, a communication software system, and an intelligent navigation system.

Our research pertains to the creation of the robot’s vision system, classification algorithm and
optimization algorithm to determine the optimal time to perform cleaning on the solar panels to

minimize the impact in energy production.

4.1 Robot-Server System Overview

The Robot architecture consists of the hardware and the software. The majority of the effort is in
the software, making the robot to be a specialized computer on wheels. The hardware consists of
three parts.

The mechanical component comprises the vehicle which is an all-terrain using an army-tank-like
continuous track, with two brushless motors, one in each front wheel. Each one of the motors is
controlled by a separate electronic speed controller. The main reason for this is to enable the robot
to make turns. Thus in order for the robot to turn left; we increase the speed on the right motor and
decrease the speed on the left. The mechanical part also includes a telescopic vision system which
provides the input to the intelligent software that understands a panel’s boundaries and decides if
a panel is clean or needs to be cleaned. The mechanical part also includes the vacuum and a brush
used to loosen material on the panel in order for the vacuum to clean the panel.

The electromechanical system includes the two brushless motors of the vehicle part of the robot,
the stepper motors of the telescopic vision system, as well as the stepper motors of the telescopic
vacuum system, and the brushless motor of the vacuum system.

The electronic part consists of a printed circuit board (PCB) connected to the four cameras
via four BNC connections, having a number of sensors used as part of the navigation system, GPS,
accelerometer, magnetometer, a DSP that takes as input the images obtained by the four cameras via
the BNC connections, stores the images in four memory chips on board, performs the classification
algorithm and makes a decision if the panel is clean or needs cleaning. The decision is passed to
the transceiver on board to transmit it wireless to the file server. The PCB board also contains a
control system that uses an ARM chip to compress the images obtained by the four cameras, passes
them to the transceiver on board which transmits them to the file server. A transceiver, a voltage
amplifier that amplifies the voltage from 1.5V to 12V, and an antenna. The PCB board is connected
to a computer board via a PCI express connection.

The software consists of the classification algorithm, that takes as input the images of the panel
obtained by the four cameras, applies the classification algorithm and decides if the panel needs

cleaning. The vision system also inspects the electric cables underneath the panel and decides if all
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connections are good or not.

4.2 The Vision System

The vision system is a critical part of the robot and it consists of four identical cameras and a
non-invasive laser. Figure 4.2 depicts the schematics of our system. The cameras are mounted on a
frame having a cross configuration. Each leg of the cross is telescopic having the ability to increase or
decrease the distance of the camera from the laser so that will decrease or eliminate occlusions. The
distance of each camera from the center of the cross is controlled by a stepper motor and it is always
known. The noninvasive laser is in the middle of the cross and is equidistant to the four cameras.
When distances are to be resolved the noninvasive laser is activated and its light is registered by
each one of the four cameras. The cameras are parallel to one another and also parallel to the laser.
During calibration for every pixel in the image space registering the laser light dot on the object, the
angle between the line defined by the image center and the pixel, and the line defined by the pixel
and the laser dot on the object, is computed and stored in a lookup table. Thus during the focus on
a panel if for a camera the laser dot is registered by a certain pixel then we know the angle formed
by the line between the pixel and the laser dot and the line between the pixel and the camera center.

Figure 4.3 shows each of the four cameras with each own local coordinate system. In the default

state the laser and the cameras are parallel and the distance of each camera from the laser is fixed.

Camera 3

0

Non-invasive laser

Camera 1

Camera 2 @

Camera 4

Figure 4.2: The schematics of the vision system.

The vision system consists of four identical cameras and a noninvasive laser. The purpose of the system is
to resolve distances, and enable the creation of 3D vision.
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Figure 4.3: Camera coordinate system.

Each one of the cameras has a local coordinate system (X;,Y;, Z;), and an image space coordinate system
(zi,y:), @ € {1,2,3,4}. The local coordinates can easily be transformed to a global coordinate system via
translation and rotation.

The default state is the one we use in order to position the camera system at a fixed distance from
the panel. In this state the laser dot has exactly the same Z coordinate for each one of the four
local camera coordinate systems.

The Z coordinate for a pinhole camera (Figure 4.4), is given by equation 4.1. If B is the known
distance between the focal points of cameras 1 and 2 then equation 4.4 gives an estimate of the
distance of the laser focal point to the laser dot on the panel. In a similar way we can obtain
another estimate of Z from the cameras 3 and 4. Two estimates of Z can be obtained from cameras
1 and 3, another two from cameras 2 and 3, another two estimates of Z from cameras 1 and 4, and
finally another two estimates of Z from cameras 2 and 4. An estimate of Z can be obtained from
camera 1 and the laser, similarly another from camera 2 and the laser, from camera 3 and the laser,
and from camera 4 and the laser.

Thus, 14 estimates of the distance of the laser focal point from the laser dot on the panel can be
obtained. All these estimates are slightly different due to the noise in the system. the average Z of
these fourteen estimates is a more accurate estimate of the distance of the vision system from the
panel. The DSP of the PCB board computes this distance relatively fast and positions the vision
system at a fixed distance above the panel. This distance is the same at every inspection of every

panel. The details of the geometry and formulas are given below.
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P(XY,2)

A(X,0,2)

° L(0,0,f) B(0,0,2)

Py

Figure 4.4: Pinhole camera model.

L is the camera pinhole or the center of the lens. O is the center of the imager, as well as the origin of the
local coordinate system (X, Y, Z), and the image coordinate system (z,y). The point P(X,Y, Z) is projected
to the point P(z,y).

The pinhole camera model can also represent the modern CCD or CMOS cameras with the chip
replacing the film and the center of the lens replacing the pinhole. In Figure 4.4, O is the center
pixel of the imager chip, and also the center of the local coordinate system. L(0,0, f) is the lens
center, P(X,Y,Z) is a point in the space projected to the point ﬁ(a:,y) on the imager. Then from
the similar triangles AALB and AOaL, if A = LO, Oa = xz, LB = Z — \, we have:

Z—-X X
Az
or
X
Z=A[1-— 4.1
(1-3) (@)
From equation 4.1 we have:
Z=)\<1—&> (4.2)
x1
X X+ B
Z:)\(l——2>:>\<1— s ) (4.3)
X2 T2

T2 — T1
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Due to the noise in the system we obtain four different estimates of Z from the four laser-camera
geometries: two estimates using the geometry of two horizontal and two vertical cameras. FEight
different estimates of Z can be also obtained using the geometry of any two adjacent cameras. Each
one of these estimates is a random variable with mean Z;, the true value of the distance, and variance
a?, i€{1,2,...,14}. According to the central limit theorem the average Z of these estimates of the
distance is normally distributed with mean Z;, where Z; is the true distance, and variance

o2 — Z;'l; o}
z 14
Let Sz be an estimate of the standard deviation of the random variable Z based on the estimates

of the true distance, and if we denote by Z; the true value of Z then the statistic:

has the t distribution with 13 degrees of freedom. Therefore

- Sz - Sz
7 — \/ﬁtl_%713 < Iy < Z+ ﬁtl_%Jg (45)

with probability 1 — a.

Formula 4.5 provides a measure of how accurate the distances estimated by our system are. For
example if Z = 100cm and Sz = 3cm, then with probability 0.95 (95%) the true distance Z; , is
98.27cm < Z; < 101.73cm.

4.3 Overview of the Classification Algorithm

The original classification algorithm is based on spectral decomposition as suggested in “Using
Spectral Decomposition to Detect Dirty Solar Panels and Minimize Impact on Energy Production”
[87].

The energy produced by solar panels declines in proportion to the amount of light blocked by
the deposits of dust and other contaminants accumulating on the surface of the photovoltaic cells.

The classification system employed by the robot to determine if a panel is clean or not is based
on the Mahalanobis distance, which is the relative, statistical measure of the data point’s distance
from a common point. The classifier we developed for the system recognizes the state of the panel
with an accuracy above 90%.

To evaluate the accuracy of the classification system we obtained sample images from solar panels

using a camera configuration similar to what will be part of the finalized vision system of the robot.
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Figure 4.5: Solar panel samples.

Left) clean panel; right) dirty panel [87].

We decided to employ three groups of training data, where each group contains one clean sample

set and one dirty sample set.
1. The first group contains data from the same panel.

2. The second group builds upon the first group by incorporating data from another panel with

similar photovoltaic cell structure.

3. The third group does not build upon the first and second group. Instead, it incorporates data
from two panels of similar characteristics, but with a lighter shade of blue than the panels

from the other groups.

See Figure 4.5 for two samples taken by the vision system of clean and dirty solar panels.
Then we utilized the jackknifing technique to estimate the precision of the classifier through the

formula:

TN +TP
TN+TP+FN+ FP

where TN (true negative)/F'N (false negative) are the number of samples correctly/incorrectly

Accuracy = (4.6)

classified as clean, and TP (true positive)/F P (false positive) are the number of samples correct-
ly /incorrectly classified as dirty [87].
Table 4.1 [87] shows the experimental results of equation 4.6 from applying Jackknife test on the

sample data.

Table 4.1: Results of applying Jackknife test on all three groups of sample data.

Group | TN | FN | TP | FP | Accuracy (%) | Misclassification Error
1 12 0 12 0 100 0
2 17 3 19 1 90 0.10
3 17 2 19 0 94.4 0.0526
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4.4 Cleaning Schedule Optimization Algorithm

When the vision and classification system determines that a solar panel is dirty, that information is
stored in the server instead of having the panel cleaned right away. The ideal moment to perform
the cleaning depends on the cost of maintenance vs. the loss of energy production, accounting for
variables such as frequency of rainfall.

To compute the energy generated in a time interval we used the trapezoid variation of the

Riemann Sum:

B =53 (Flain) + (@) A (4.7)

where f(z;) is the power measured at sample x;. Ax; is the time lapse between measurements x; and
Z;+1 which is constant for all measurements since sampling was taken at uniform intervals during
the experiment. Our Power (P) sample was computed from measured solar panel output given by

Voltage (AV) and Current (I) using Ohm’s Law variant:
P=AV-I (4.8)

See Figure 4.7 for an example of captured data. In this example, the energy generated measured
from the sampled data on May 215, 2012 from 0 hours to 2359 hours using equation 4.7 was
E =7.20kWh.

We collected weather data from Clark County Regional Flood Control District (Flood Control)
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Figure 4.6: Number of days with measurable rainfall per month on 2014.

Measurements according to NOAA at Henderson station, Mojave Desert, Nevada.
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Figure 4.7: Solar panel data collected during a typical sunny day in May.

(a) Voltage (in Volts) vs. Time; (b) Current (in Ampere) vs. Time; (¢) Power (in Watts) vs. Time.
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and National Oceanic and Atmospheric Administration (NOAA) to determine the frequency of
measurable rainfall on arid zones, such as the Mojave Desert. We decided the measurable amount
based on how much water was necessary to have an effect on dust and particle accumulation on a
solar panel surface.

We arranged the rainfall data per month and computed the number of days per month with a
measurable rainfall throughout 5 years (from 2011 to 2015). Using a best of fit test on the collected
weather pattern data , we determined that the number of days with measurable rainfall can be

modeled using the Poisson distribution:

T ,— AT
PIX =) = ¢

o re{012,.) (4.9)

where A is the mean and variance of the distribution. The parameter A depends on the particular
location as well as on the Sun spot activity on said location.

The dust accumulation on the panel in a day is a random variable. Because power loss is directly
related to accumulation of dust and particles on the panel surface we can model the power loss (in
USD) also as a random variable. After experimentation, we found that the power loss in a day

follows an exponential distribution with parameter «@ and has the form:
f(z) = ae™", x>0 (4.10)

where the parameter « can be estimated from the data in a controlled environment. This function

measures the probability that the power loss is 1 < x < xs.
k

If X; is a random variable and X; ~ Exponential(a), then ZXi ~ Erlang(k, o). Therefore,

i=1
provided no measurable rain has fallen in k£ days, then, the sum of power loss in k days follows an

Erlang distribution with parameters k£ and «:

.Ifk_l()ék —ax

g(x) = I‘ikt)a’ a>0ke{l,2,..} (4.11)

where g(x) measures the probability that the power loss is 21 < x < x5 after k days of no measurable
rainfall.
Finally, if C is the cost of cleaning a panel, then the expected power loss (in USD) in &k days

after the panel was cleaned, and no rainfall has occurred is:

o0 xkakefaz k
E = ———dr = — k 1,2, ... 4.12
@= [ gde—n a>0kell2.) (112)

k
This means that if C' < — or k > Ca« for the first time (minimum k) then, it is the optimal time
e

to clean the panels. As the cost C decreases, the k decreases and the power increases.
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4.5 Results

The described architecture of the Robot-Server system allows for the proper positioning of the robot
cameras used to capture solar panel images. The classification algorithm recognizes if solar panels
are dirty based on statistical pattern recognition. Dirty panels and marked and stored in the server.
The system is able to detect whether the loss of energy is above a critical value in which case,
maintenance and cleaning crews, or better yet, the robot itself is dispatched to clean the marked
panels. Testing the system in the solar panel lab offered excellent results minimizing power loss

successfully when compared to a regular cleaning schedule regardless of cleanliness and energy loss.
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Chapter 5

Details on Deep Learning and

Artificial Neural Networks

In this chapter we discuss the basics of modern Artificial Neural Networks. We survey techniques
employed to improve convergence rate and speed up neural network learning as well as explain the
inner workings of Convolutional Neural Networks (CNN) and implementation details. The main
goal in this chapter is to replicate the implementation of current state-of-the-art networks using
our own implementation to test our knowledge about the modern techniques that went into those
networks. Knowing the internal works and details of modern neural networks allows us to build
upon their architecture to identify areas that need improvement or that can be built upon to either
perfect these designs or to produce our own architectures.

In the following sections we offer an in-depth overview of the fundamental concepts and techniques
necessary to understand the details of current state-of-the-art neural networks and deep learning
research.

We will cover necessary concepts regarding Fully Connected (vanilla) Feedforward Neural Net-
works, their architecture and training using stochastic gradient descent along with a plethora of
methods to improve convergence rate. These concepts are expanded to the more recent CNNs espe-
cially applied today to image and signal processing and classification, giving birth to modern buzz
terms in the area such as “deep learning.” We give details and pointers to adapt vanilla network

methodologies to the more involved CNNs.
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5.1 Fully Connected Feedforward Neural Networks

A Feedforward Neural Network (FNN) is an artificial neural network in which its basic computational
units do not form cycles. Artificial neural networks are graph-like computational models inspired
in the biology of the neural cortex, used in classification and approximation problems. A fully

connected FNN is also known as a multilayer perceptron.

5.1.1 Basic Computational Unit

The basic computational unit of the neural network is the neurode and it is represents the simplified
mathematical model of a biological neuron. The terms computational unit, neuron or neurode are
used interchangeably to refer to the artificial neuron or neurode. Figure 5.1 shows the model of a
specific neuron 1.

The incoming n arrows have weights wg,ws, ..., w,, and represent weighted connections from
other neurons. The vector of incoming weights is w. These are the parameters that get modified
during training of a neural network.

The arrows labeled zg,x1, ..., T,, represent the activation value of the connected neurons that
serve as input for this neuron. The vector of inputs is x.

The activation value for this neuron is z;. It is computed as z; = f;(S;), where f;(z) is referred
to as the activation function or non-linearity. While there are many activation functions, for the
purpose of back propagation (in a later section) f; is often a non-linear, non-polynomial, continuous,
differentiable, function due to the shown fact that neural networks with continuous non-linear and
non-polynomial activation units in, at least, one hidden layer possess the universal approximation
property [29][45].

The parameter S; is the result of the function S; and has no formal name in literature. It is

Xo

Wo
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often expanded and included as part of the activation function, but we like to call it weighted (or
total) input or local receptive field as suggested by LeCun et al. [42] because its task is to combine
the incoming weights and inputs somehow for the activation function. The most common weighted
input function is the linear combination or dot product:
n
S; =8S;(w,x) = ijxj + bias; (5.1)
j=0

where bias; is an independent parameter for each neuron i, called bias. It is used to reposition the
linear combination in the n-dimensional space to better represent the distribution of the input. The
bias is often considered a weight for a constant input of 1 because it is another parameter that is
modified during training.

Different neurons in a neural network may present different weighted input functions and different
activation functions.

While dot product is the most common, it is not the only weighted input function. Other
commonly used functions include the maximum or average of either the inputs or the product of
inputs and weights. This is another reason why we like to have a separate term for this part of the
activation function.

The mathematical function of a neuron is to divide the n-dimensional hyper space with the
hyperplane defined by S;(w,x) and to compute a new output (activation) based on how far is the
input vector from the defined hyperplane.

A collection of neurons acting over an input vector is able to divide the hyperspace into complex
regions. This behavior allows for exact approximation or for generalization of functions with strict

subdivisions or relaxed subdivision respectively.

Common Activation Functions

While the classic activation functions used in early neuron models called McCulloch-Pitts nodes

were the step functions of the form [50]:

1, ifz>t

flz) =
0, otherwise
where t is some threshold value, differentiable activation functions are preferred as activations in
order to be able to perform training using back propagation with gradient descent or second order
methods.

The most common activation functions used today are the logistic sigmoid (often referred to as

log-sigmoid or just sigmoid), hyperbolic tangent [59][56], radial basis function (RBF) [57], rectifier
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[21] and softmax.

The sigmoid and hyperbolic tangent functions are known as sigmoidal or sigmoid-like functions,
having an “S” shape. These functions were used initially to substitute step functions because of
their similarity, but with the added benefit of being continuous and differentiable.

The sigmoid is defined as:

1

= 5.2

f@) = (52)

The hyperbolic tangent behaves much like the sigmoid, but the inflection point is more con-

strained:
et — %
= 5.3
fa) = S (53)

Figure 5.2 shows the plot of the activations for the sigmoidal functions.

The RBF was studied as a variant to the sigmoid activations. It has a bell shaped curve similar

to a Gaussian (from which RBF draws inspiration) and is defined as:
f(z) = e~ Bla—m? (5.4)

where p is the value where the curve peaks and 3 controls the opening of the curve. Training radial
basis networks is a little more involved than sigmoid networks because of the extra parameters u
and 3 that need to be either trained, or decided before training.

An alternative to RBF was proposed to potentially help with optimization of the training process

1.0f
0
-4 2 2 4
-0.5
-1.0¢
— Logistic sigmoid —— Hyperbolic tangent

Figure 5.2: Comparison between Logistic sigmoid and Hyperbolic tangent.
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because it involves no exponential calculation [9]:

1

flz) = R (5.5)

This function also displays a bell shape and a derivative that behaves similarly to RBF. Compare
the variants to RBF in Figure 5.3.
Radial basis functions, however, have been shown to work well in approximators, but do not

generalize as well from reduced training data as sigmoid activations do [6].

A rectifier activation is a special case of activation functions because it is not differentiable at 0.
It is defined as:
f(z) = max(0, x) (5.6)

For training purposes, the derivative at 0 is usually taken from the left only, thus:

() 1, ifx>0
xTr) =

0, otherwise

Neurons with a rectifier activation function are commonly referred to as Rectified Linear Units
or ReLU.

It has been experimentally shown that ReLU in hidden layers, and especially in convolutional
layers, can dramatically improve the convergence speed of a neural network, but they suffer from
the “dead” ReLU problem: once the value of = reaches 0, the gradient passing through the neuron

vanishes and the neuron stops learning and firing, effectively “dying.”

-4 -2 L 2 4
— RBF — Chandra, Ghose and Sood variant

Figure 5.3: Comparison between Radial Basis Function variants.
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One approach to reduce the dead ReLU problem is the utilization of small learning rates. Another

approach is to modify the neuron into whats called a leaky ReLU [46]:
f(z) = max(z - leak, x) (5.7)

where leak is a small, positive value, usually below 0.01 and sometimes it is turned into a parameter
that is learned.
The softplus function is another alternative to reduce the dead ReLU impact [17]. It is defined
as:
f(z) =In(1+€") (5.8)
Recent studies have brought Exponential Linear Units (ELU) as yet another alternative to ReLU
[12]. These units have shown to provide even better recognition accuracy than ReLU. The activation

function is defined as:
x, ifx>0

fz) = (5.9)

a(e® — 1), otherwise
where a > 0 is a constant hyperparameter to be tuned before training.

The first derivative of the ELU activation is:

1, ifx>0
f'@) =

ae®, otherwise

Figure 5.4 shows a comparison among the ReLU variants. Each iteration is aimed to reduce

the dead ReL.U problem and increase the differentiation at the point = 0. Notice that for ELU

-1F

— ReLU — Softplus — Leaky ReLU -—— ELU

Figure 5.4: Comparison among Rectified Linear Unit variants.
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activation, if @ = 1 then, the first derivative exists at = 0 and f/(0) = 1.

The softmax activation is usually applied to output layers in classification problems because of
its nature of converting the output into a probability function. The softmax activation is defined as:

eSi

>l €S

where S; is the value of the weighted input for neuron ¢, S is the vector of all weighted inputs for

f(S;) = softmax(S;,S) = (5.10)

all the neurons in the same layer as neuron ¢ and N = ||S|| (cardinality of S).

Clearly:

[8)=3 o = 1.
ZZ:; ( ;Z?f:lesj

This is why this function is mostly used as activation for the last layer for classification problems
where the target output is a vector that expresses the probability of the input to belong to each

class. For back propagation purposes later:
eJi (z;vzl e — eSi)
5 .
(ngzl eSi )

The softmax should only be applied for single class classification problems. This is, if there are

f(8:) = (5.11)

two or more possible classes in the input at the same time then, a different activation should be

used in the output layer. In this case, a sigmoid is preferred for all output neurons.

5.1.2 Architecture and Forward Propagation

The power of neural networks is in the massive capacity for parallelization. Each neuron is able
to perform its computation independently from all other neurons (except, maybe, from those upon
which its input depends). In layered architectures, all neurons in a single layer can process their
inputs in parallel.

Fully connected FNNs are organized in layers of neurons. Each neuron in a layer is fully connected
to all the neurons in the previous layer. This means that the outputs of all the neurons in layer [
are inputs to every neuron in layer [ + 1.

Figure 5.5 depicts a generic FNN architecture. This network contains L layers. Layer 0 is often
called the retina or input layer. Normally, computational units are not represented for the input
layer because they do not process any information, but the neurons in the input layer have only one
input and their output is always the identity. Layer L —1 is called the output layer while the rest are

called hidden layers. The definition of hidden layer varies per literature, but in our context, we call
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Input Layer 1 Layer 2 Layer L—2 LayerL -1
Layer

Figure 5.5: Generic Fully connected Feedforward Neural Network also known as Multilayer Percep-
tron.

hidden layers to those layers whose neuron inputs or outputs are not visible or accessible externally;
this is, only other neurons in the network have access to the inputs and outputs of these layers.

The number of neurons for layer I € {0,1,...,L — 1} is denoted n;. The output for neuron
i € {0,1,...,m — 1} in layer [ is the neuron activation and it is denoted ZZ-(l) = fi(l)(Si(l))7 where
fi(l) (x) is the activation for the neuron and Si(l) is the value of the neuron’s weighted input function
Si(l)(x). The layer superscript can be omitted to signify that the value of the function evaluation
for the neuron or element can belong to any layer in the network. Cardinality of the input vector is
l|x|| = n. Entry j € {0,1,...,n — 1} in the input vector is denoted as z;. If the output of neuron ¢
is input to neuron j, it is said that neuron j is connected to neuron i and it is denoted j < 7 and
the weight of the connection is wj;. The reason for the backwards indices is to help with matrix
representation during computations later.

In the diagram in Figure 5.5, information propagates from left to right (from the retina towards
the output layer). Forward propagation is the term used to describe the computation of a neural
network output given an input. From the input layer, each neuron computes its activation as
described earlier. The result is propagated to the first hidden layer as input. The first hidden layer
performs the same propagation step and so on until the results are propagated to the output layer.

Therefore, the input to every layer as well as its output are vectors.

5.1.3 Training and Back Propagation

Machine learning is a branch of artificial intelligence that covers a range of methods that allow the
training of a machine to be able to approximate some target function. The process of training involves

exposing the learning model to a set of samples and then tweaking the model parameters based on
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the output in order to identify patterns in the input, thus learning the appropriate parameters that
generalize to the complete known or unknown target function. Neural networks are a classic example
of a machine learning model.

Machine learning can be split into two categories: supervised learning and unsupervised learning.
Supervised learning is the process of “teaching” the machine by supplying the proper known output
to each specific input and adapting the learning parameters to approximate the known target.
Unsupervised learning is the process of running the machine over a provided set of inputs with no
known or given output, having the data progressively cluster into different classes [59]. We focus

our discussion on supervised learning in which back propagation with gradient descent excels.

Back Propagation with Gradient Descent

The modern algorithm of choice for training a neural network is back propagation with gradient
descent. Most of today’s state-of-the-art neural networks use this algorithm or some variant or
extension with modifications to suit the network specifics. While there are other algorithms based
on Newton’s method, second order derivatives, and so on, back propagation with gradient descent is
often the method of choice because of its relative simplicity, ease of computational speed and space
optimization and proven results.

Given a training set of exemplary data (pair of input vector and corresponding output vector for
supervised learning) containing n elements, an epoch is defined as a complete pass over the training
set; this is, each training sample has been presented to the network for learning.

Back propagation is aimed at optimizing the parameters of an objective function to minimize the
error utilizing the mathematical concept of gradient descent or more precisely stochastic gradient
descent. The difference between gradient descent and stochastic gradient descent is that the former
performs the update of the parameters (i.e. weights) of the network after a full epoch has completed,
while the later is able to update the parameters after each sample, or after a few samples (called
minibatch) [59][33]. Even though initial parameter changes may seem large and erratic, stochastic
gradient descent is the method of choice when implementing back propagation because it usually
leads to faster convergence after more parameter changes occur along the steepest descent per epoch
than classic gradient descent.

Given the objective function £ : W, x,t — R |, where W is the matrix of parameters we want
to train (the weights for the network), x is the input vector of a sample of exemplary data and t is

the corresponding target output vector of exemplary data, the change for matrix W is defined by
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the Jacobian:
m

AW =) VwE(W,x;, t;) (5.12)
This is the gradient of £ with respect to the matrix W given the vectors x and t for a minibatch.
The number of samples in the minibatch used in the step of stochastic gradient descent is m. The
sum is over the m gradients obtained from each minibatch sample i (the i-th sample in the current
minibatch is a pair composed of the input vector x; and output vector t;).

Then, the stochastic gradient descent is defined as:
W+ W — —AW (5.13)

Where 7 is the learning rate. This is a constant that controls how fast the change of weights affects
the actual matrix of weights [54] (more on the learning rate later).
Note that this is vector notation. To compute the actual change for a single parameter weight

k, the scalar formula becomes:

Awy, = Z aTukE (W, x;, t;) (5.14)

where w;, is an element of matrix W.

The scalar version of the stochastic gradient descent is then:
n
Wy — wi, — —Awy, (5.15)
m

During computations, equation 5.14 is expanded using the derivative chain rule.

When using minibatches, the changes are accumulated for each sample in the minibatch. The
actual parameter is updated by the accumulated weight divided by the number of samples in the
minibatch as per equation 5.14.

When m = n, where n is the total number of samples of exemplary data, the stochastic gradient
descent devolves into the gradient descent. If m = 1, then it is called online training because the
network weights are modified for every sample it sees.

Gradient descent can be visualized as a simulation of a ball rolling down a hill where the objective
function is seen as a distance between the network output and the target function. The objective
function creates a hypersurface with an absolute minimum where the network output is the same
as the target function for all inputs in the domain of the target function. The objective function
evaluated in the current network output is the position of the ball on the hypersurface. Gradient
descent computes the steepest slope and its direction towards the minimum, also known as gradient.

Updating the network parameters to a factor of the gradient steers the network output closer to the
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desired function, making the “ball” move further down into the valley on the hypersurface containing
the minimum.

Online learning can see a chaotic convergence of the network while full gradient descent sees a
steady, but slow approximation [59]. Stochastic gradient descent offers the best of both worlds with
a less chaotic convergence, but with network modification that occurs more often than once per
epoch [54]. While stochastic gradient descent and online learning have shown little improvement
over the other experimentally, stochastic gradient descent is preferred. The reason is that despite
the changes to the network occurring less frequently than with online learning (however, frequent
enough to accelerate the network learning in contrast to gradient descent) the reduced frequency in
changes helps with implementation optimization: the minibatch technique can be implemented as
massive matrix operations that can be incredibly optimized with vector libraries and offloaded to
co-processors and devices specialized in mass floating-point operations such as GPUs. The speed

gained from fast matrix operations surpasses the online learning computational speed.

Practical Implementation: the Delta Rule

The number of weights in a FNN can grow very rapidly. For example, if layer [ has n; neurons
and layer [ + 1 has m;41 neurons then, the number of connections from layer [ to layer [ 4+ 1 is
ny - ny+1. To compute the change for each parameter in those connections we need just as many
derivatives. Computing each derivative is an expensive process because each is composed of chains
of multiplications and the deeper the network the higher the number of derivatives in the chain.

The solution for a practical implementation is the delta rule. It turns out that the chain of multi-
plications for the derivatives repeats itself on every layer. The delta rule is a dynamic programming
algorithm that realizes the back propagation in a neural network.

To define the delta rule, we have to realize that the objective function E is a composite function
of the form E(W,x,t) = (Jo F)(W,x,t) = J(F(W,x),t) , where F is the function represented
by the neural network (which is the composition of the activation function of all the neurons) and
J is the error or cost function.

The general delta rule is then defined for neuron ¢ as:

OF aftt~y
L , if ¢ is an output neuron
8f(L_1) as(L—l)
) arl asity ‘ '
’(l) ﬁ d;, otherwise
058, s, af; s

If we assume that the weighted input function for all neurons in layer [ + 1 is the dot product,
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then, the delta rule can be simplified to:

8£ g if 7 is an output neuron
5 ) Of . 0Sls 5.17
(=1 o7 (517)
39 . Ej wj;0;, otherwise

where wj; is the weight of the connection from neuron 7 to neuron j, and ¢; is the corresponding
delta value computed for neuron j. This means that for all output neurons, the delta can be
computed directly using the network final output vector z. For each hidden neuron i, it is the
partial derivative of its activation function with respect to the weighted input function (evaluated
in the weighted input value), multiplied by the linear combination of the weight of each outgoing
connection and the corresponding connected neuron’s delta [59].

The delta of a neuron represents the error of all the computations depending on that neuron’s
activation value.

After computing all the deltas for the network we have a lookup table of all the needed previous
partial derivatives and we do not need to re-compute them each time we need to calculate the change
of each weight.

Finally, if the weighted input function is the dot product as defined in equation 5.1 for all neurons

then, equation 5.14 for change to the weight of connection from neuron j to this neuron ¢ can be

reduced to:
S
Awgj = 51'78101-]- = 0i2j (5.18)
and
oS
Abias; = 6;—— = 0; 1
bias; = § Tbias, ) (5.19)

Recall that the output for neuron j is denoted as z;.
The delta rule basically makes the computation of back propagation an O(||W]|) process, i.e. a

linear computation on the number of weights.

The Vanishing Gradient Problem

If we monitor the delta § of the neurons per layer in a FNN, we will see a pattern that the closer a
layer is to the input, the smaller the average delta is. The delta of a neuron is directly proportional
to the gradient or change in weight Aw as per equation 5.18, so, the smaller the delta gets, the
smaller the change to the weights become, leading to slower learning. This phenomenon is known
as the vanishing gradient problem [35][56].

The source of the problem is the actual computation of the gradient using the derivative chain

rule. The farther a layer is from the output, the longer the chain of multiplications become.
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For example, in equation 5.40 later in the chapter, one term of the chain is:

oOFE 027 05 92% 95 9. 55
92 08 92 95 92V 950 gulH

where zi(l) is the activation of neuron i in layer [. If the activation function for all neurons is the
sigmoid, their derivative is never larger than 0.25. See Figure 5.6 for a plot of the sigmoid and
hyperbolic tangent derivative showing that the derivative of the sigmoid is in the range (0, 0.25] and

the derivative of the hyperbolic tangent is in (0, 1]. So,

o O <1> 255" <1) 255 (1> sV
B 82%3) 4 82%2) 4 82%1) 4 8w§1)
(1 9B 9s( a5 ast!

- \64 32{3) 8z£2> 8z§1) Gwél)

As we get closer to the retina, the factor shrinks exponentially in the order of 0.25 per layer.
This is an informal argument and not a rigorous proof that the vanishing gradient will occur. The
message to take is that the gradient in an early layer is the product of all the gradients that follow
and the vanishing gradient is a possibility given that most modern techniques to improve accuracy
and convergence rate tend to keep parameters within a range close to zero to facilitate training and
avoid neuron saturation.

The other side of the coin is the ezploding gradient. This occurs when one of the repeating terms
in the chain grows large making the deltas grow exponentially the farther the layers are from the

output for the same reasons as to why vanishing gradient occurs. While this phenomenon is less

-4 -2 2 4
— Derivative of the log-sigmoid —— Derivative of the hyperbolic tangent
Figure 5.6: Plot of derivatives of the log-sigmoid and hyperbolic tangent functions.
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common than vanishing gradient, both are the result of the same structure, therefore, the term
unstable gradient is used to refer to the general problem.
Deep networks such as convolutional and recurrent neural networks are more susceptible to the

vanishing gradient problem mainly because of their large number of layers.

5.1.4 Improving Convergence Rate

Convergence rate is defined as the number of samples required to be presented to the network before
it reaches an approximation value within a desired € of the target function or it stops learning. This
is often measured in epochs since the whole collection of training samples must be presented to the
network several times to reinforce learning before achieving good approximation values.

Note that convergence speed is a different term. It has to do with the time (in units of time such
as seconds) that it takes for a specific network to converge while training on the same hardware.
In computer science equivalents, convergence rate can be viewed as algorithm complexity, while
convergence speed is related to execution time. However, while high complexity algorithms become
impossibly large to compute despite optimization techniques, there are cases in neural network
training in which some convergence algorithm may offer significantly better convergence rates, but
the implementation and convergence speed are prohibitively expensive.

Most of the research in the area of neural networks today is focused on changes to the core concept,
replacing formulas, activation functions, parameter selection, etc. to obtain better convergence
rates and tackle the unstable gradient problem, reducing the amount of training necessary while
attempting to improve on the already excellent results in accuracy. Research on convergence rate
also focuses on striking a balance between techniques to improve convergence rate and feasible
implementation and optimization to reduce overall convergence speed on a given hardware. These
techniques are spread out throughout several researches. Some of the most commonly used and with
better results are compiled here and applied to our practical implementation.

A major factor that affects convergence rate are hyperparameters. Hyperparameters are param-
eters used to control the learning of a network, but do not form part of the network itself. Once the

network has been trained, hyperparameters are discarded.

Learning Rate

One problem of gradient descent is that the approach to the minimum error is asymptotic. This is,
the closer the network output gets to the target function, the smaller the changes become and the

approximation slows down due to the nature of the objective function.
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During the initial stages, changes are often big and happen fast because the network output
is far from the target function. The learning rate n is the hyperparameter that controls how fast
the changes occur (see equation 5.13). Learning rate is a real number typically in the range (0, 1),
but, in some cases, it can be above 1 or it must be below 0.1. Deeper architectures favor small
learning rates. Normally, constant factors that appear during the derivation of the equations for
back propagation are omitted and condensed within the learning rate value.

A relatively large learning rate will make the network start converging fast; however, once the
error gets closer to the minimum, a large learning rate applies large changes to the parameters when
the asymptotic nature of the method suggests that changes have to be smaller. This may cause
the network output to skip over the actual minimum and sometimes produce larger errors after the
skipping. In such case, oscillation of the approximation is the best case scenario; gradient explosion,
leading to divergence, is a worse case possibility.

A common technique to avoid this problem is to dynamically reduce the learning rate of the
network. While choosing the initial learning rate for the network or for each individual neuron can
be difficult and it is often a result of trial and error, there are a couple of standard methods to

reduce the rate dynamically that work well in practice.

One method increases the learning rate by a very small amount every epoch until the convergence
slows down between epochs. When such is the case, the learning rate is drastically reduced, usually
by half its value. This method gives good convergence to local minima, but needs some adaptation
when working with minibatches [56].

Another method is called annealing in which the learning rate at each iteration ¢ is set to ﬁ
where a is the initial learning rate, b is the learning rate when the annealing starts (i.e. the current

learning rate) and c is some pre-selected constant [54].

During our practical implementation we did not implement dynamic learning rate directly into
the libraries, but let the clients decide on their own implementation. For our experiments, we
utilized a hybrid of the two methods: we performed a variation of annealing based on the number
of reductions instead of number of iterations as shown by algorithm listed in algorithm 2. The
reduction was performed whenever the convergence slowed down and the result of the error function
began to increase. The reduction of the learning rate often resulted on continued convergence of the
network until the eventual convergence or stabilization.

While reducing the learning rate gives good results regarding convergence speed, the problem

of vanishing gradient is ever present in deep networks (more than one hidden layer). The closer
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Algorithm 2 Schedule Algorithm for Dynamic Learning Rate Reduction by Annealing on Number
of Reductions

1: Let a < initial learning rate.

Let n < a; current learning rate.

Let dy < 4o00; the last error achieved.

Let D < desired accuracy.

Let € < small positive value indicating little progress.

Let threshold <+ maximum number of epochs allowed to train with an error difference bellow e.
Let bad_epochs < 0; number of epochs that have trained with an error difference bellow e.

Let tmax ¢ maximum number of learning rate reductions before stopping training (early stop-
ping).

9: Let t <= 0; number of learning rate reductions.

10: repeat

11:  Train for 1 epoch using current learning rate.

12:  Let d < error achieved between the network output and target function after last training.
13:  if (dy —d <€) then

14: bad_epochs <+ bad_epochs + 1

15:  else

16: do < d

17: bad_epochs + 0

18: t+0

19:  end if

20: if (dy — d < 0) or (bad_epochs > threshold) then
a

21: n CE)

22: t—t+1

23: bad_epochs <+ 0

24:  end if

25: until (dy < D) or (t > tmax)

we get to the input layer, the smaller the deltas for the neurons become. Changes to the error
function can mitigate the impact of the vanishing gradient problem, however, we found during our
implementation and testing that having individual learning rates for the layers (and even individual
neurons) and making the reduction of the learning rate less aggressive, proportional to the distance
from the neuron to the output layer would also result in a small improvement on accuracy.

The factor of the reduction was decreased the further away a neuron was from the output when
a learning rate reduction was required. However, the selection of the factors should be studied more
closely. The factors used in our experiments were selected as the result of trial and error. This
implementation consideration made changes to in the initial layers more relevant.

The learning rate can be constant over an entire epoch or there can be algorithmic variations in

which the learning rate changes during the course of an epoch based on some condition.
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Adding Momentum

If the objective function around the local minimum to which our network function is converging has
the form of a shallow ravine with steep walls around it, large learning rates will cause oscillations
in the best case; small learning rates can bring the approximation to a crawl or even to a stop the
closer we get to the minimum.

We encountered this issue during our implementation as well. Researching the topic, we found
that a method used to push the convergence towards the minimum faster is the use of “momentum.”

Momentum is an analogy from physics in which a charged particle continues moving in the
direction of its velocity even when the forces applied to it change magnitude and direction in an
electric field, for example.

Adding the momentum to the change of weight in equation 5.18 results in what is known as the
“generalized delta rule” [61]:

Awgj = ;25 + pAw;; (5.20)

where p € (0, 1] determines how many iterations of the previous gradients are incorporated into the
current update. Generally p < 0.2 during the initial learning and it is increased to p = 0.9 or higher
when the convergence slows down.

Because AW is a factor of the learning rate as defined in equation 5.20, momentum has been
found to help reduce opposing oscillations by counteracting weight changes in opposite directions
while enhancing the effect of the learning rate when there are several weight changes following the
same direction [59]. In the literature, the learning rate is a factor of the second term in equation 5.20
and the momentum is defined as an independent constant, or as a value depending on the learning
rate. The momentum is, in the end, constant over an entire epoch.

Experimenting with our implementation, the addition of momentum dramatically reduced the
convergence rate by shaving off a fifth of epochs needed to train the network to reach the desired
error. We increased the momentum after we had applied more than two learning rate reductions
at which point the convergence of the network had slowed down to a crawl and no oscillation was

occurring.

Cost Functions

The cost function is the distance measure between a single network output and the target output
of the known target function being approximated. The cost function composed with the function
represented by the network is the objective function. The training process of a neural network

entails the minimization of the objective function by adjusting the parameters or weights of the
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neural network.

The choice of cost function is related to the activation function selected for the neurons in the
output layer as well as to try to mitigate the effect of the vanishing gradient by limiting the reduction
of the error value with less multiplications or canceling terms in the chain rule or by producing large
error values.

Most common cost functions found in literature and state-of-the-art networks today are the Mean
Squares Error (MSE), the Cross-Entropy and closely related log-likelihood function.

The MSE cost function is classically defined as:

J(z,t) = MSE = % i (zi — t;) (5.21)

i=1
where, given the next sample of exemplary data (x,t) —input vector x and known target output t—,
z = F(W,x) is the output vector obtained from the neural network with the current weight matrix
W. The number of neurons in the output layer is the cardinality of ||z|| = |[t|| = n, so, z; and ¢;
are the i-th elements of vectors z and t respectively, i € {0,1,...,n — 1}.
Also,

)
95,7 (#:8) =2z — 1) (5.22)

Note that in derivatives, the coefficients are usually omitted because they are factored into the

learning rate. So, equation 5.22 is actually used as:

0
82‘,’ J(Z,t) = Z; — ti (523)

The MSE is an umbrella cost function that can be used in most cases in contrast with other
cost functions that are specially defined to be used only for certain problems and specific activation
functions.

The Cross-Entropy is defined as:

1
n

J(z,t) =1In (ﬁ 21— zi)(lt")) (5.24)

But this definition is computationally expensive. It is most commonly expanded and used as:

J(z,t) = —% Z i (tilnz; + (1 —t)In(1 — 2;)) (5.25)

x =1

where m is the number of exemplary inputs x in a minibatch.

Also,

3 Z; — ti
azi J(Z,t) B Zl(l — Z,)

(5.26)
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This cost function is mostly used with activation functions that output results in the range (0,1)
such as the sigmoid or softmax. This function mitigates the vanishing gradient problem because the
partial derivatives depend linearly on the output z instead of a quadratic dependence as is the case
with MSE [56].

Note that if the activation for output neuron ¢ is the sigmoid as defined in equation 5.2 then:

1
z = f(9) = 155
0
! . . !
%= 5 ()-8
_ e o
(14 e )2
= 21(1 — 21;) . S/
and by the chain rule, one of the terms of the sum is
OE| Of| 95 _ _x-—l z.(l_z.)a_s
of ., oS s, owe  z(1—2)"" " Owy,
oS

if F is the cross-entropy cost function.

As we can see, depending on the activation or weighted input functions for the neurons, the
choice of cost function can simplify the computations or simplify terms, helping reduce the impact
of the vanishing gradient problem.

The log-likelihood function is closely related to cross-entropy with a similar effect on the gradient
because while the objective is to maximize the likelihood between the exemplary output and the

actual output, it reduces to minimize the quadratic term of the MSE.

Regularization

On the same note, if we apply all previous little details to training a network, we may find that some
weights can grow rather large. In such cases, neurons can become saturated by only a few of these
since any time the neuron connected with this weight fires, it overcomes all other neurons connected
with smaller connection weights, also contributing to the exploding gradient problem. This behavior
leads to large weighted input values and learning slowdown, and, sometimes, overfitting.

To maintain weights inside smaller ranges, regularization techniques have been proposed. The
purpose of regularization is to keep weights controlled in small ranges around the vicinity of zero.
This improves learning because small changes on the weights still have impact on the computation

of activation and reduces the chance of occurrence of exploding gradients.
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A commonly used regularization technique is called L2 regularization. It consists on adding a

term to the cost function. If the current cost function is Jy, then, the new cost function is [56]:
J=J0+izw2 (5.27)
2n " ’

where n is the size of the training set and A > 0 is the regularization parameter. The sum is over all
the weights in the network.

The effect of this change is to have the network prefer small weights over large weights. Large
weights are only preferred if they considerably improve the original cost function Jy. This preference
is controlled by the regularization parameter which becomes another hyperparameter for the training
of a network. A relatively large A inclines the network towards smaller weights while a smaller one
makes the network prefer weights that impact the original cost.

With this change, equation 5.15 for the update of the weights becomes:
A
w; (1 — %) w; — nAw; (5.28)

If the regularization parameter is zero, equation 5.28 devolves into equation 5.15 with no changes.
A

The factor (1 — 77_) is referred to as weight decay. Equation 5.28 is obtained by the chain rule
n

method applied as usual where

= —w; + Aw;
w; —w; — oF
4 i T]awz
=Wy =1 <_wi + sz>
n
A
— Wi — n_wz - nsz
n

Since the regularization term added to the cost function does not affect the biases, equations to

compute the change in bias are not affected.
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Dropout

Dropout is a regularization technique different from L1 and L2 regularization. It consists on modify-
ing the network by temporarily randomly eliminating about half of the the network’s hidden neurons,
then training the remaining half using minibatch gradient descent. After a minibatch training is
completed, the removed neurons are restored and the process repeated from the elimination step.

Dropout has been studied since originally introduced because of its effect of considerably im-
proving accuracy, especially within very deep networks such as convolutional neural networks where
overfitting is a real problem [27].

The idea about this method leans on the fact that if we train several networks to recognize
the same function, we can find a consensus about the result of a single evaluation, thus increasing
the probability of a successful recognition. For example, if three out of five networks trained with
different initial parameters, and possibly different architecture, recognize the input to be in class A
while the others recognize it as class B, then the input most likely belongs to class A.

The technique reduces dependency among neurons and strengthens the level of accuracy by
verification of the results via different paths. The reduced number of neurons is forced to learn more
robust and general features that are corroborated by the other sub-networks [36]. The resulting
network can be viewed as composed by several sub-networks trained more or less individually which
come together to achieve a consensus for the solution.

While this is a concise overview of the concept of dropout, the original paper and application of
the method by Geoffrey Hinton et al. [27][36] go into specific details that are useful for implemen-

tation and utilization of the technique.

Batch Normalization

Batch normalization is a novel technique that aims to reduce the need for regularization in deep
architectures [31]. This technique is geared directly towards stochastic gradient descent because it
works in a per-batch mode.

Even if the input data to a layer is scaled to be in the range [—1, 1], it may still suffer from a shift
from a mean value of 0 and a standard deviation of 1. Also, as the data flows from layer to layer,
the activation values of each layer may even deviate outside of this range. Recall that sigmoid-like
activation functions tend to saturate outside of this range, so, as the data propagates through the
network it is preferred to maintain it within [—1,1] and with a distribution of mean 0 and standard
deviation of 1.

This is exactly what batch normalization accomplishes. It shifts and scales the input data to
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each layer so that it maintains a distribution that, most likely, will not saturate neurons or cause
exploding gradients. Without batch normalization, the shift of the data outside of the desired range
is referred to as “internal covariate shift” and every layer is prompt to produce it.

Batch normalization works by adding a special Batch Normalizing layer (BN layer) between
existing layers of a network. The BN layer will apply a Batch Normalizing Transform to the incoming

batch B of m inputs (each input is a vector x of cardinality n) as follows:
1 m
KB, m ; Lij ( )

where i € {1,2,...,n} is the dimension of vector x for which to compute the average pp,. So, each
entry in vector pp is the average of the corresponding entry of all the input vectors in batch B.
Similarly, the minibatch variance is computed as the unbiased estimation:
1 m
2 2
OB < Z(l‘ij — 1B, (5.30)
Jj=1
This produces vector o g where each of its entries is the unbiased estimation of the variance for each
corresponding entry of all the input vectors in batch B.

The input is normalized as:
Tij — UB,

1/01231 + €

where € “is a constant added to the minibatch variance for numerical stability” [31].

f?ij < (531)

Finally, the activation of for each neuron in the BN layer is computed as a scaling and shifting
linear operation:

Zij < wilij + b (5.32)
where w; and b; are the trainable parameters for this layer and can be seen as the weight for the
single input to neuron ¢ and its bias.

The scaling and shifting is required because during normalization, we lose information about the
original distribution of the data. The network can re-learn this distribution or a completely different
distribution through the trainable parameters w; and b; from equation 5.32 if needed.

The BN Transform is a differentiable process, thus ensuring that the equations for gradient
descent can be applied to it without any problem and training can proceed with this type of layer
as with any other layer.

Batch Normalization has been shown to enable the application of larger learning rates in deep
networks, speeding up the convergence rate, and the utilization of sigmoidal functions since the
input range is kept within limits that avoid saturation. It has also been proven to reduce the need
of regularization techniques and dropout and it is a staple component of most recent neural network

architectures.
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Weight Initialization

There are several ways to initialize the weights of a neural network before training. The strategy
chosen can be seen as another hyperparameter for training.

There is empirical evidence that good weight initialization can lead to improved recognition
accuracy and convergence rate. Given the nature of most activation functions, weights should be
chosen in the range [—1,1] and as close to zero as possible, but not zero for most values. While
complicated methods utilizing genetic algorithms do a decent job of finding good initialization values,
the overhead and extra work is significant when compared to the results obtained from random
initialization.

A good initialization pushes the objective function to the vicinity of the minimum that is being
found during training as well as watches to avoid neuron saturation as explained in section 2.3.1.

By the same reason, the elements of the input vector to the neural network should be scaled to
be in the range [—1, 1] or [0, 1] depending on the architecture and activation functions selected for

the network.

Organizing Samples and Testing

Neural networks have been shown to possess the universal approximation property given certain
constraints. This is good news since it means that with enough trainable parameters, a neural
network can approximate any function or fit any data set. This, however, is a double-edged sword.
Neural networks are also used as classifiers due to their approximation capabilities, but mostly
because under certain circumstances, neural networks perform excellent generalization.

A classifier is a mathematical function that maps input data to a category based on specific
features. A classifier can be directly formulated or trained. The desirable trait of any classifier is
that it will correctly classify any possible input data correctly. However, when there is no known
classification function for a problem, good trainable classifiers allow for an approximation to such a
function and generalize to all unknown, but possible input based on the training set.

Normally, a model with a large number of parameters, relative the number of data points leads
to overfitting. Overfitting refers to a a model describing a phenomenon “too well.” The model starts
to describe noise and error in the observations instead of the underlying relationship. In this case,
the model fits perfectly to the training set, but fails to perform beyond that.

The large number of trainable parameters in a neural network are key to its great strength and
flexibility. The parameters are changed and steered through the course of training to fit the training

set and to be able to generalize to elements not included in the training set. However, excessive

60

www.manaraa.com



training or bad choice of training and testing sets may lead the network to overfit, akin to how a
polynomial of order 5 can fit perfectly on 4 data points even if their real relationship is linear. In this
case, the network stopped learning the general features of the training set and began memorizing

particular noise on the training set or overfitting over the testing set.

A technique to avoid overfitting is called hold out [56]. In its basic form, it consists on splitting
all the data into three sets: training set, validation set, and testing set.

The training set contains all samples that will be used actively during training of the network.
Presenting all the samples in this set to the network constitutes an epoch. The order of presentation
of the training set samples to the network has been the subject of research. It has been found that
a uniform, random order of presentation, especially if there is a uniform distribution of samples per
class in each minibatch, allows a network to learn better by not skewing towards certain classes that
may have been clustered at the start of the epoch.

The validation set shall be used with two purposes. First and foremost, it will be used to assess
the progress of the network after each epoch. Second, it will be used to select hyperparameters for
training.

Several combinations of hyperparameters, such as learning rate, dynamic learning rate algorithm,
regularization parameter, momentum, weight initialization strategy, and even architecture, are usu-
ally tested before actual training starts in order to select the best candidates to achieve desired
recognition rates with reasonable convergence rates. The success of each combination should be
validated against the validation set.

The test set is withheld from the network and only used to test whether the network is general-
izing or overfitting against the validations and training sets. A network may be showing use what
we want to see when testing against validation set, but it may be doing poor generalization. We
can use the testing set to ensure that a proper training was completed and the resulting network

generalizes to other samples outside of its training and validation sets.

Last, but not least, a common source of overfitting is training too much. If the network reaches a
stable state, where its recognition accuracy does not improve it could be because it reached a point
on the error surface with little slope or it has approached to the minimum asymptotically and it can
no longer refine its approximation with its current architecture and parameters.

The first case, although not common, it can still occur. During training, one can chose to save
the current state of the network and allow it to train for longer in hopes that it may leave the flat

area and continue learning, but with the fallback state in case it won’t happen.
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The second case is the more common as a network will approach the minimum asymptotically
and may bounce around it indefinitely given its current state. Depending on how aggressive the
training is, this oscillating stable state can be detected by the training software and stop training.
This is called early stopping.

Continuous training when a network has reached a stable state can lead to overfit on the training
set and start learning its noise. When this occurs, a drop in recognition of the validation set begins
to appear, unless the overfitting is also being observed over the validation set. If such is the case,
the testing set can be used to check for overfitting. Early stopping can successfully avoid overfitting
by over training, and not only avoid the undesired effects, but it can shave precious time off the
training.

Too aggressive early stopping detection may result in underfitting, the opposite of overfitting
and it is even less a desirable effect.

A technique for early stopping can be implemented by counting the number of learning rate
reductions from the dynamic learning rate algorithm and stop training after a certain number of
reductions occurs without improvement of accuracy within some e. This was our preferred approach
during our experiments and it is depicted in algorithm 2 where variable ¢ keeps track of the number

of continuous reductions without improvement.

5.1.5 Implementation Remarks of Feedforward Neural Networks

Our current implementation of a neural network library is capable of training fully connected FNNs
faster than comparable Python implementations that utilize Numpy or Theano libraries or Google’s
Tensorflow machine learning library and as fast as Intel’s deep learning library as of this writing.

Our implementation uses C++ 11 with OpenMP for multicore computing, along with Intel Math
Kernel Library (MKL) to optimize computation speed with mass vector and matrix operations and
with the capacity to auto offload work to coprocessors. For trully large matrix operations, our library
utilizes OpenCL kernels that offload massive matrices into GPUs if available when the time it takes
for the matrix operations to complete in the main processor of the machine outweights the time it
takes for data transfer from main memory through the bus into the GPU.

While popular machine learning libraries take advantage of similar optimizations, the direct C++
implementation delivers better performance due to its proximity to hardware. C++ also requires no
bridge to communicate with other libraries or hardware directly, feature that Python lacks. However,
as these popular libraries improve, the defficiencies from Python become less of an impact.

Our implementation was compiled and deployed to the Cheery-Creek super computer from the

National Supercomputing Institute, helping to develop experiments that completed in hours in-
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stead of days, taking advantage of Intel Xeon processors and Xeon Phi coprocessors for operation

offloading.

Optimizations

Our implementation takes advantage on the fact that forward propagation between fully connected

layers is achieved by the following vector-matrix operation:
SO =wO . z=D 4 pO (5.33)

If layer [ has n; neurons and layer [ — 1 has n;_; neurons, then, b() is a vector that can be seen as a
ny x 1 matrix of values representing all the corresponding biases in layer I, W) is a n; x n;_; matrix
where wj; € WO is the weight of the connection from neuron j in layer I1 to neuron i in layer [;
z(=1) is a vector that can be seen as a m;_; X 1 matrix of values representing the corresponding
activations of all the neurons in layer [ — 1. Finally, S is a n; x 1 matrix of values representing all
the corresponding weighted input values for the neurons in layer [.

Furthermore, if we train using minibatches of size m, we can condense all minibatch samples into

matrix form:

SO — wb . z(-1 | g0 (5.34)

where Z(=1 is the equivalent to vector z( -, a n;_; x m matrix where each column represents the
activation vector resulting from the corresponding sample in the minibatch; B(®) is the equivalent
to vector b, a n; x m matrix where each column would be a replicated vector b(). The resulting
S® would be then a n; x m matrix of all the weighted input values for the minibatch.

This is the reason minibatch training of stochastic gradient descent is the preferred method.
Matrix operations are much faster than vector-matrix operations (up to a point) because the pro-
cessor can cache large amounts of information limiting memory access and bus traffic. Furthermore,
for very large matrices, operation offloading offers even more computation speed because dedicated
devices such as GPUs can perform massively parallel operations and since all the data is transferred
once every batch instead of every sample, the operation speed gain surpasses the bus load and trans-
fer times penalty. The thin grain parallelization allowed by neural network computational units is a
great fit for the greatly parallelizable matrix operations.

The delta rule for backpropagation can also be optimized following a similar philosophy. If 6
is the vector the corresponding neuron deltas in layer [, then:

sU-1 — ﬁ

o5 . (Vv(l))T .80 (5.35)

st-1)
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where (W(l)> ! is the transpose of matrix W®, and % is the vector of the derivative of the
activation function evaluated in layer [ — 1’s weighted inpi(tl 7\;z)xlues.

A similar matrix extension for minibatch processing is easily implemented for this formula.

Bundling operations together in vector and matrix form makes vector libraries such as MKL
work quite efficiently, reducing the training time dramatically. Using these methods, the C++
implementation reduced training times by a factor of 20 in the supercomputer and it was still
reasonable to train using a commercial workstation, especially with an equiped GPU.

With these improvements in speed, we were able to reproduce and surpass convergence speed of

the examples given in Nielsen’s book [56], even stress-training for many epochs and adding several

more neurons and hidden layers.

5.2 Convolutional Neural Networks

Filters are major tools used for digital signal and image processing. A Convolutional Neural Network
(CNN) is a feedforward neural network with an architecture that allows it to incorporate the concept
of filters to fully connected designs. CNNs were biologically inspired by the animal visual cortex
where individual nerve cells are stimulated by specific events or patterns from a constrained portion
of the whole receptive field. Each of these constrained neurons is basically a filter that fires if the
pattern or event being filtered is present.

Through training, filter neurons learn the parameters for a pattern. During forward propagation,
the filters extract the relevant pattern information and features, passing it to the fully connected
portion of the network which is in charge of analyzing and recognizing the patterns extracted. This
type of network is relatively new and has proven very powerful in its intended area since its practical
inception in seminal works such as in LeNet-5 [42].

The concept of a filter involves a kernel that operates on a signal by applying it to every element
of the input through a process called convolution. Convolution is an integral that represents the
amount of overlap of one function g as it is shifted over another function f [74]. The resulting signal
will have the kernel features enhanced while others would be attenuated.

The concept of a filter is realized in a CNN as a neuron with sparse connections to the previous
layer. Ideally, a single filter would be convolved over a whole input signal to produce an output,
and in the case of a filter neuron, the neuron would fire if the feature detected by its filter is found
over the whole input. However, a single neuron acting as a filter is not optimal in the context of
a neural network, therefore, for a single filter, there is a neuron per input element in a layer where

each neuron of pertaining to some filter shares weights with the other neurons of the same filter. A
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Figure 5.7: Filter neurons in a convolutional layer.

Picture the filter neuron looking at a portion of the input image, then moving to the next portion until the
complete image has been looked at. Whenever the neuron “sees” the pattern that it is trained for, it will
fire. A convolutional layer actually has a filter neuron per portion sharing the filter instead of moving a
single neuron over the whole input.

layer composed of filter neurons is called a convolutional layer. The output of a filter convolution
is called the feature map containing the activation values of all the neurons sharing the same filter.
The filter along with the step at which it is applied to the input is called a feature. Figure 5.7
graphically depicts the operation of a feature in a convolutional layer.

Because of the nature of the convolution operation, features are said to be translation invariant.
This is, the localization of the feature in the input is not consequential, but its existence is. Features
are not, however, scale invariant. In their paper “Learning Hierarchical Features for Scene Labeling”
[18], Clement Farabet et al. apply CNN to label objects in an image. They trained their network
with samples of a single scale. To account for the lack of scale invariance during testing, they created
what is known as a image pyramid by manually scaling the original image to different sizes before
applying a CNN to each size in order to identify features when they appeared at the trained scale.

Often, convolutional layers are followed by so called pooling layers. Pooling layers contain neurons
that take the output of the preceding convolutional layer and subsample it by finding the maximum
output value or the average value of regions from the convolutional layer output. The objective of
pooling layers is to abstract from locality where a feature may have been found. The loss of locality

is a necessary drawback of CNNs.
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Pairs of convolutional-pooling layers form the initial layers of a CNN. Fully connected layers
after the convolutional-pooling layers perform the actual pattern recognition based on the features
extracted. The number of fully connected layers is usually 2 counting the output layer, but rarely
more than 3. This is based on the fact that any fully connected FNN with non-linear units possesses
the universal approximation property when it has a hidden layer with a sufficient number of neurons
[29](45].

Because a convolutional-pooling layer pair outputs a feature map, this can be used as input
to another convolutional layer to extract other features from the resulting map. This chain of
feature maps allows for the addition to several connected convolutional layers. CNNs can have
from a few layers of depth like LeNet-5 with 5 layers to 20 or more layers like Google’s Inception.
Recent news have revealed extravagant amounts of combination of layer types and techniques from
Microsoft research that totals to over 150 layers of depth to win the 2015 ImageNet Large Scale
Visual Recognition Challenge, overcoming the vanishing gradient and difficulty of training very deep
networks with a new method dubbed “Deep Residual Learning” [25]. These new architectures are the
reason of the appearance of buzz words to describe the learning mechanisms of these large networks
such as “Deep Learning” since their counterpart vanilla multilayer perceptrons rarely boasted more
than 2 hidden layers.

On initialization, before training, the actual values for the filters in the convolutional layers are
not known and are initialized using similar techniques as for weights in fully connected layers. The
goal is to utilize learning techniques like gradient descent to train the whole network to automatically
converge to the appropriate filters that will recognize the features specific to the problem.

The great strength of CNNs with respect to classic signal processing methods is that convolutional
filter kernels need not (and should not) be known before training, but are learned by the network
using the exact same back propagation algorithm as with fully connected networks resulting on
accurate filters that extract the correct features needed for recognition, while classical methods

utilize pre-defined filters that may not be as appropriate for every situation.

5.2.1 Convolutional Architecture

In classical statistical pattern recognition, several (orthogonal) features are often used to enhance
the accuracy of classification. Clearly, the more identifying features an input has, the better it can
be classified as being part of a specific class of inputs sharing the same features. The same principle
applies to convolutional layers. A single convolutional layer should scan its input for more than
one feature, so, there can be s sets of neurons, each set sharing its own filter among its neurons.

Refer to Figure 5.7 showing a diagram representing a convolutional layer and picture, instead of a
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single filter neuron, s filter neurons looking at the same portion (however, due to the nature of the
features, portions in which an input is divided need not be the same for each feature).

Despite the underlying implementation of a convolutional layer, a convolutional layer is inter-
preted as a 3-dimensional layer: width, height and depth where depth is the number of features
while width and height directly correspond to the dimensions of the input signal.

Assume we have a training set of 50000 samples of input images with dimensions 28 x 28 and
they are full RGB (3 color channels) and the target classification into 10 classes for each input. The
input dimensions are 28 x 28 x 3. Let’s create a simple CNN architecture to classify the images. The
architecture will have a single 15-features-convolutional layer connected to the input, followed by
a max-pooling layer, ending with a 10 output neurons fully connected layer. Note that this is just
an illustrative example of a CNN and may not be an optimal CNN recognizer for this classification
problem.

We will define all the features in the convolutional layer to be 5 x 5 x 3 filters operating on all the
color channels with a step of 1 pixel vertical and 1 step horizontal (note that we can have filters of
any size with any step that operate on a specific input channel or on several input channels). This
will make the output for a feature to be of size 24 x 24 x 1. Note that the output of a feature is always
of depth 1, so, the depth of an n-features convolutional layer is output_width x output_height x n.

Therefore, the output for the convolutional layer will be of size 24 x 24 x 15.

Output layer

Input layer

Convolutional
layer

Max-poo
layer

ling

AN

O O
Fully
connected O
15 pooling O
LL features
15 features

Figure 5.8: Example of convolutional neural network.
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Max-pooling layers are special cases of convolutional layers where the weighted input function is
not the dot product, but the maximum function. The pooling layer will perform max-pooling in an
area of 2 x 2 with a step of 2 for each feature. The output of the max-pooling layer will be of size
12 x 12 x 15. While the step in a convolutional layer feature is designed to have the filtered regions
overlap, it is desired in pooling layers that pooled regions do not overlap, but they are contiguous
in the layer input.

See Figure 5.8 for a graphical depiction of the described network. Note that this depiction is
shows the functional architecture. The actual architecture realizes the function by connecting the
sparse connections from convolutional neurons to the appropriate outputs from the previous layer.

All the neurons in a feature of the convolutional layer share the same weights. These weights are
the convolution filter. Each feature has its own filter. Because the filters for each feature have the
same size by the design in our example, the i-th neuron in feature f will apply feature f’s filter to
the same input pixels as the i-th neuron in feature g, but with feature g¢’s filter. Note that this need
not be the case since features can have filters of different sizes and steps as long as the outputs of

each feature have the same dimensions.

Weighted Input Functions for Pooling Layers

As explained before, pooling layers are special cases of convolutional layers where the weighted input
function is not the dot product. The purpose of a pooling layer is to reduce locality and reinforce
feature recognition.

Common pooling layers use the maximum function, hence their name max-pool layers, or the
average function.

The maximum function applied by a neuron in a max-pool layer to its input has the form:
S(x) = max {z : Vz € x} (5.36)

where x is the input vector to the neuron.

.. . . oS
When training with back propagation, we encounter the term o where z € x, so,
T

98 1, ifzx=5(x)

= (5.37)

0, otherwise

The weighted input function for an average pool layer is:
Se =13 (539
X) = — ZT; .
[t
where the cardinality ||x|| =n and z; € x with ¢ € {0,1,...,n — 1}.
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And
oS 1
— =— 5.39
dr n (5.39)
Biases and weights can be added to the computations and while these may add extra training

parameters, often the optimization trade off is not worth it.

Activation Functions for Convolutional Layers

The convolution operation (either with dot product, maximum, etc.) is considered the weighted
input function of a convolutional layer’s neuron. The activation of a neuron can be any arbitrary
non-linear activation function, or no activation (i.e. identity activation function) in which case, the
output of a neuron is the same as its weighted input value.

It is common to see identity functions as activations of convolutional layers while pooling layers
have a proper activation such as sigmoid or rectifiers. The reasoning is that if the pooling layer
is max-pool, computation cycles can be saved if there is no activation in the convolutional output
because the max-pool layer will discard results from smaller activations (note that most activation
functions f are increasing, therefore, max(f(xo), f(x1), ..., f(zn)) = f(max(zg, x1, ..., Tpn)))-

As stated in section 5.1.1, ReLLU and their variants, especially in pooling layers, have shown
to greatly improve convergence speed. During weight initialization of convolutional layers, setting

biases to 1 has shown to reduce the dead ReLLU problem.

Batch Normalizing Layers

There have been attempts to introduce normalization layers between two convolutional-pooling

pairs and between fully connected layers to help with the vanishing gradient and regularization, but
2

———, discards information that the network may

Zj Zj

need [31]. The novel batch normalization technique is used to apply normalization while preserving

standard normalization of activations where z; <

all the information [31] and it is part of almost every state-of-the-art deep learning network today.
The practical moment to apply batch normalization in CNNs, however is to the result of the
weighted input function of the pooling layer, and use the normalized result as input to the pooling
layer’s activation function.
Batch normalization is said to reduce or eliminate the need for dropout and other regularization

techniques.
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Input Layer

Figure 5.9: Simple convolutional neural network.

5.2.2 Training Convolutional Layers

We found from our survey [33][54][56] that the delta rule works for convolutional neural networks

with little change, but these sources either gloss over the details or “leave it to the reader” without

X1
X2 t
X3 12
X4
Layer 2 Layer 3
Input Layer

Figure 5.10: Branches affecting shared weights in a convolutional neural network.

Highlighted in bold are the connections from network in Figure 5.9 that affect shared weight wél)‘
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any convincing explanation.

Next we explain how the delta rule should works for convolutional neural networks with a small
addition.

A typical convolutional layer with pooling layer architecture looks like in Figure 5.9.

Layer 1 is a convolutional layer and layer 2 is a pooling layer. Layer 3 is the output layer. Notice
how neurons in layer 1 share their weights wgl) and wél).

Figure 5.10 shows what branches of the network affect one of the shared weights. In this case
.

Practically every branch affects the specified shared weight. Computing Awél) using the back

propagation method from equation 5.14 we obtain the result in equation 5.40.

F
For notation brevity o= F’ (zgl)) means partial derivative of a function F' with respect to
0z;
the activation function evaluated in the activation value of neuron 7 in layer [. So, for example, if
2 2 OF E
E= Z (z(?’) - ti) (the MSE objective function) and 2B = (S-(3)), then = =
v ¢ g (3) (3)
i=1 af 1 Z§3) aZl

2 (zf’) — t1>. Similarly, Si(l) is the result of the weighted input function of neuron 4 in layer [ and

SO Oon.

OF
awél)
_0E 92V las@ 922 (as@ 920 a5 . 85 92V asé”)
92 98 | 922 95 \ 92" 98P w928 98t ow
05 928 (05 92" 855 05 92" 9s)
025 95y (azg” 950 gu® 52 55D a@”)]
| OE 925 las@ 922 (as@ 920 a5V N 95 92" asé”)
9259 98P | 922 05 \ 92" 95M aw 928 a5t owl?
0S5 9287 (058 02" s 05® 92{1 a5
0289 05 (azgl) oS ow " 02" aslM awg”>

Awgl) =

(5.40)

If we apply the delta rule to build the look up table as in equation 5.16:
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50 _ (959 50059 05
! e 9. ) g

@ (3051 | (505®5) 025"
07 =\ 0"y T ©)
0z 9282 | 95§

50 _ (52057 | <2087 0z
2 = 0 %2 T ) 5
25 085,

Then we use the computed deltas to find Awél) as follows:

o5M 95V 9sH
Awl) = W21 s TP s(1) IO3 (5.41)
? ! wél) 2 awél) 3 awél)

If we substitute the deltas and expand the result of equation 5.41, then we expand the right hand
side of equation 5.40, the equivalency becomes evident.
This means that the delta rule still works for shared weights. The only implementation change

is that instead of setting values for the change in weight, the values should be accumulated:

Awy <+ Awyg + (5ia—S (5.42)
8wk

for every connection from a neuron j to a neuron ¢ for which wy is the shared weight parameter.

Gradient Propagation Through Convolutional Layers

Because pooling layers (such as max-pool or average-pool) are special cases of pooling layers, the
delta rule applies exactly the same as long as we respect the weighted input function and its deriva-
tive.

The weighted input function for a convolutional layer is the dot product as applied in a filter

convolution:

S](»l) = ngl)z,(f_l) +b
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This is, the weighted input value of neuron j in layer [ is the shared (filter) bias plus the sum of the
O]

%

(filter element) and the activation of the neuron k in layer [ — 1
®

i -

products of each shared weight w
that is connected to neuron j with weight w

as(l)

‘ w as we expected and it is the same as with a fully connected layer. Of

7‘] = h
Therefore 5,01 §

course, if the neuron £ is not connected to j, then, this is the equivalent as having a connection with
weight wj(lk) = 0 and the derivative is zero.

This last observation is used to reduce the implementation of convolutional layers to the existing
fully connected layers where non-existing connections are conceptually established in order to fully
connect the layers and a weight of zero is given to the conceptual connections. The resulting
conceptual fully connected layer would have a large number of connections given the nature of
convolutional layers and the large number of neurons. The matrix of weights (W) is, however, a
sparse matrix with a large number of zero entries compared to the non-zero. The nature of shared
weights and sparse connections turns an impractically huge fully connected layer into a manageable
and resource smart convolutional layer.

For the case of an optimized max-pooling layer (where weights of connections are ignored and

assumed to be 1) equation 5.36 translates into:

SJ(-l) = max {z(lfl) : V neurons k in layer [ — 1 connected to neuron j in layer l} (5.43)

which means that the weighted input value of neuron j in layer [ is the maximum of all the activations
of the neurons k in layer [ — 1 connected to neuron j.

Therefore:
oS 1, if SJ(-I) = z,(clfl)
= (5.44)
P (1-1)
%k 0, otherwise.
Of course, if the neuron k is not connected to j, then the derivative is zero, since the first portion

of the conditional will never be true.

5.2.3 Implementation Remarks

Adding convolutional layers to our previous implementation was simple once the change to the delta
rule was devised. The multidimensionality of the convolutional layers was realized logically while
maintaining the internal one-dimensional structure of the neurons. This allowed us to keep the
matrix format and reuse the MKL and OpenCL code for optimization. Pooling layers were devised
as convolutional layers as well. The weighted input and activation functions were changed to reflect
their behavior, but the underlying functionality was that of a convolutional layer with immutable

weights.
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The other only major change came in the form of protecting all the weights from data races. A
critical section had to be created specific to each weight. Due to the massive parallelization possible
by the inherent architecture of neural networks, changes to shared weights have to be protected
because the delta rule now works by accumulating instead of setting values. This change did not
impact the efficiency of the implementation as much because only convolutional layers have shared
weights and the great amount of connections makes the neurons work on different weights at a time.
Actual races to enter a shared weight critical section are uncommon.

To test our implementation we decided to create a convolutional neural network to recognize the
MNIST image set of handwritten digits. The simple network featured one 20 feature convolutional
layer with 5 x 5 filters of step 1 in both dimensions, one max-pooling layer with 20 2 x 2 pooling
filters, one hidden fully connected layer with 40 neurons and the output layer with 10 neurons, and
no dropout or batch normalization.

The results were impressive. Ounly after 4 epochs our network had reached the values from
previous tests using fully connected networks. After 10 epochs it had surpassed the previous tests

and was close to results obtained by Tensorflow implementations 99% recognition that apply dropout.

Optimizations

A matrix is considered sparse when most of its elements are zero. If we have the CNN portrayed
in Figure 5.9 and we extend layer 1 to be a fully connected layer using conceptual connections of

weight zero, we obtain a weight matrix of the form:

w1, W2 0 0
W = 0 wyp Wy 0 (545)
0

0 wp, W2

While this matrix can be barely considered sparse, if the number of neurons in the input layer
increases, the number of rows and number of columns per new neuron increases by 1, but there will
be still only 2 non-zero entries per row because the feature filter has only 2 parameters. So, we see
that the larger input and the convolutional layer get, the sparser the matrix becomes. In practical
applications, a small convolutional layer has over 1400 neurons (for an input of 700 elements and
20 convolutional features). The resulting matrix has a large level of sparsity. If this were a fully
connected layer, the number of parameters would be huge and the speed of computation would suffer.
Multiplication of sparse matrices saves time because the large number of zero entries is ignored.

Sparse matrix multiplication implementations take advantage of the packed matrix concept.

A well packed matrix not only saves space, but it can help with proximity caching, making use

74

www.manaraa.com



Table 5.1: Example of sparse matrix in zero-based indexing CSR, format.

Index 0 1 2 3 4 5
val wy | we | wi | wg | wy | wa

coliind | 0O 1 1 2 2 3

rowptr | 0 2 4 6 - -

during operations of nearby memory locations, mitigating the penalty of memory access. For our
implementation, the sparse matrix packing method of choice was the Compressed Sparse Row (CSR)
format [30].

The CSR format for a sparse matrix is composed of three arrays: (val, col_ind, row_ptr).

The val array stores the non-zero elements of the matrix as they are traversed in row-major
order (top-to-bottom, left-to-right). The size of this array is the number of non-zero elements in the
matrix.

The col_ind array stores the column indices for each element inside its row. The size of col_ind
is the same as wval’s.

The row_ptr array stores the index in val at which a new row starts. The size of row_ptr is the
number of rows plus 1. Usually, the last element of this array is the number of non-zero elements in
the matrix.

For example, the zero-based indexing CSR format for matrix W in equation 5.45 is shown in
Table 5.1.

With the concept of sparse matrix, the matrix multiplication variants for forward propagation

5.34 and back propagation 5.35 can be reused.

5.3 Results

With the knowledge gained with our survey and observations on neural network architectures, train-
ing algorithms and deep learning, we implemented our own Feedforward Neural Network library. The
library was implemented in C++ 11 utilizing modern multicore computing techniques and CPU ar-
chitectures along with optimization technologies such as OpenMP for multithreaded programming,
Intel MKL for highly optimized vector and matrix operations, OpenCL for co-processor and GPU
offloading to achieve even higher processing speeds and take advantage of the huge parallelization
possible by the Many-Integrated Cores designs of Intel Xeon Phi co-processors and AMD GPUs.
The motivation for creating our own library was to have the ability to inspect, tweak and monitor
internal details of a neural network such as internal deltas, change in parameters, learning rate

schedule, and to have fine grain control of the training and operation of our networks with research
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purposes.
A condensed version of our library can be found in appendix B. The original code has support

for 32 bits floating point and 64 bits floating point values. Only the 32 bits portion is shown here.
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Chapter 6

Quantitative Evaluation Method
for Neural Network Weight

Initialization Strategies

The adaptive parameters in fully connected feed-forward neural networks are usually referred to as
weights. These parameters change during training to approximate the desired function using some
training algorithm. These weights in a neural network are often the coefficients applied to the linear
combination of the inputs to every computing unit, including the bias (the weight of a constant
extra input of value 1).

Parameter or weight initialization (including biases) for neural networks has been empirically
shown to be a critical step during training. The motivation for good parameter initialization is to
chose values in range of the attractor of the final desired solution in order to speed up training,
increase speed of convergence and probability of correct classification. A proper weight initialization
can reduce the number of training samples needed by the network to achieve an accepted error
value, meanwhile, improper initialization could set the initial hyperplane division so far away from
the optimum solution that it may lead to divergence and an approximation of the final function that
is no better than chance.

Initialization strategies are evaluated by training a neural network and comparing the results
with other trained neural networks that applied different initialization techniques. However, there
appears to be no practical quantitative measure that can compare different weight initialization
strategies regarding the gain in convergence rate and convergence accuracy for the same neural

network architecture, and thus, there is a lack of formal evaluation that can determine whether
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experimental results are consistent or simply the result of random anomalies given the random
nature of existing initialization methods.

We developed a method to quantitatively compare different initialization techniques by using
multivariate analysis, statistics of extremes, analysis of variance and estimation theory. The results
allow for the assessment of whether some strategy is superior to another or if the differences between
them are not significant enough to warrant such superiority. The goal is to provide a quick, objective
method to compare initialization techniques and select the best possible beforehand without having
to perform multiple training sessions for each candidate strategy and directly compare final results.
Selecting the statistically superior strategy for training gives the neural network to be trained the
advantage to converge to a better approximation faster with high probability. We show how, if such
strategy exists among the techniques being compared, our method successfully determines the best

strategy within the first epoch of training.

6.1 Assessing the Effect of Weight Initialization on Learning Speed and

Approximation Accuracy

Let P.;j, denote an estimate of the probability of correct classification in epoch e, where e =
1,2,..., E, using the sampling initialization strategy i, where ¢ = 1,2,...,I, and the number of
samples j, with j = 1,2,...,J. The index j represents the j-th initialization sampling set .;; chosen
for the sampling strategy ¢ at epoch e. The number of times J we reinitialize the weights and repeat
the neural network training could be different for every initialization strategy J. Due to the large
number of samples used to train the neural network the probability estimate P.;; converges to its
true value for this initialization set of random weights. Each time we repeat the training of the neural
network using the same initialization strategy the new Fe;;; is different than the probabilities found
in the previous trainings using the same sampling strategy i. Thus F;; is a random variable having
a probability density function fe;(p), and a cumulative distribution function F;(p).

The following theorem establishes the probability functions, the means and the variances of the
maximum, and minimum of the random variables F,;;. The purpose of this theorem is to be used in
order to understand if there is any overlap between the probability estimates of the various weight

initialization strategies.

Theorem 6.1.1. Let P.;1, Peio, Peis, ..., Pejy, be random variables with cumulative distribution func-
tion Fe;, 5 = 1,2,...,J, for a given epoch e, and a given weight initialization strategy i. Where
e=1,2,...FE, andi=1,2,...,1. Let Pejmax = max (Pej1, Peia, ..., Peiy) be a random variable which

is the mazimum of the J random variables P.;1, P.ja, ..., Pei g, then the cumulative distribution func-
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tion of this maximum 1is:
Frnax(p) = (Fei(p>)J (6.1)

therefore the probability density function of the mazimum is:

fmax(p) = J(Fei(p))J_lfei(p)- (62)

The expected value for the mazimum is:
Pmax

E(Put ) = / P (Fui(p)’ 1) fui(p)dp (6.3)
Pmin
and the variance 1s:
Paras Prax 2
O = / P*J(Fei(p))” ™" fei(p)dp — ( / pJ (Fei(p))J_lfei(p)dp> : (6.4)

Prin Prin

The 95% right side tolerance interval for the max is:
Prax < E(Pei max) + GO0max (65)
where the a is chosen so that P(Pe;max > a) = 0.05.

Proof. Let Pejmax = max (Pe;1, Peja, ..., Peiy) denote a random variable which is the maximum of the
J random variables Pe;1, Pej2, ..., Peiy then Fiax(p) = P(Peimax < p) = P (max (Pei1, Peia, ..., Peiy) < p) =
P(Peit < p, Peiz < pyoes Peig < p) = P(Peit < p) - P(Peig <p)-...- P(Peiy < p). The product of
probabilities in the last term is due to independence of the random weights selected in each separate

neural network training. Thus from the above we have:

Fmax(p) = Fei(p)Fei(p)mFei(p) = (Fei(p))J

From this result we obtain the density function:

Fmx®) = 2 (F.i(p))’

The mean of the maximum is:

Prax

Hmax = E(Peimax) = /P ' pJ(Fei(p))J_lfei(p)dp

Pmax
= Pmax - /p (Fel(p))Jdp

and second moment:

Prax
B(P2 ) = / P I (Fui(9))"~ fui(p)dp

Pmax
=P2, 2 / p(Fei(p))” dp.
Phrin
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Therefore, the variance is:
02 = E(PZimax) - Ez(Peimax)

2
Pinax Prax
= Pl’%lax - 2/ p(Fei(p))Jdp - (Pmax - / (Fei(p))Jdp) .

Pryin Pryin

The right sided 95% tolerance interval for the P,; .y is:

Pei max S ;U/max + A0 max

where a is chosen so that P(P.;max > a) = 0.05. O

Theorem 6.1.2. Let P.;1, Peio, Peis, ..., Pejy, be random variables with cumulative distribution func-
tion Fe;, 5 = 1,2,...,J, for a given epoch e, and a given weight initialization strategy i. Where
e=1,2,.,F, andi=1,2,....1. Let Poimin = min (Pe;1, Peia, ..., Peiy) be a random variable which
is the minimum of the J random variables Pej1, Peo, ..., Pejy, then the cumulative distribution func-
tion of this minimum is:

Fin(p) = 1= (1 = Fei(p))’ (6.6)

therefore the probability density function of the minimum is:

fmin(p) = J(1 = Fes(p))" " fei (p)- (6.7)

The expected value for the minimum is:

Pmax
B(Peimin) = [ 930 = (Falp) ™) sl (6.9)
and the variance 1s:
Pmax

Prax
Ohin = / P*J(1 = (Fei(p)” ") fei(p)dp — (/

Pryin Prin

2
pJ(l—Fei(p))"‘lfei(p)dp> . (69
The 95% left sided tolerance interval for the min is:

E(Peimin) — a0min < Peimin (6.10)
where the a is chosen so that P(Pe;min < a) = 0.05.

Proof. Let Pu;min = min (Pe;1, Peja, ..., Pe;y) denote a random variable which is the minimum of the

J random variables P.;1, P2, ..., Pe;j, then the probability distribution function of this minimum
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is:
Fuin(p) = P(min(Pe;1, Peia, -y Peig) < p)

=1— P(min(Pe;1, Pei2, .., Peiy) > p)
which implies that

Finin(p) =1 — P(Peir > p, Pei2 > p, ..., Peiy > p)
=1-(1=P(Pi1 <p)) (1= P(Peir <p)) - ... . (1 = P(Peir < p))

= 1= (1= Fup)’

From the result above we obtain

fmin(p) = dip (1 - (1 - Fe’i(p))J)

=J(1 = F.i(p)’ " fui(p).

The mean of the minimum is:

Prax

Hmin = E(Peimin) = /P A p'](]- - Fei(p))J_lfei(p)dp

Pmax
:Pmin _/ (1 _Fei(p))Jdp
Prin

and second moment:

Pmax
E(Pgimin) = /P pz‘](l - Fei(p))J_lfei(p)dp

Pma.x
— P2, 42 /P p(1 = Fuilp))” dp.

Therefore, the variance is:

o2 = E(P?% i) — E*(Peimin)

min ei min

Pmax
:Pr%lln+2/ p(l_Fez(p))Jdp_ (Pmln_/

Prin Prin

Prax

(1 - Fez(p))Jdp>
The one sided 95% tolerance interval for the P.; min is:
HMmin — A0 min S Pei min

where a is chosen 8o that P(Pe;min < @) = 0.05. O

If we compute the probability of correct classification for epoch e using two different weight initial-

ization probability distributions, and if for each one of the initialization strategies we repeat the
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training J times. Then for the first initialization strategy we will obtain J different probabilities
of correct classification for epoch e. Similarly if we repeat the training of the neural network J
times using the second initialization strategy, then we will find J different probabilities of correct
classification for epoch e. If the probabilities obtained by the first initialization are all greater than
the probabilities of the second, and the probability density function of the minimum of the first for
epoch e, does not overlap with the probability density function of the maximum of the second for
epoch e, then the first initialization strategy is always superior than the second. This theory can be
extended to more than two weight initialization strategies.

One can also compute the 95% tolerance intervals of the minimum of the first and if they do not
overlap with the tolerance intervals of the maximum of the second then with probability 95% the
first is superior to the second. In the case the computed probabilities for epoch e overlap for various
strategies then we can use analysis of variance to test the hypothesis that the means are equal.
If the hypothesis is rejected that implies that there is a statistical significance between the weight
initialization strategies. In this case the strategy with the highest average has an advantage over
the strategy with the lowest average. Finally if there is an overlap in the probability distribution
functions of correct recognition for a given epoch of the various weight strategies then we identify
the one weight strategy with the mean shifted to the right compared to all other strategies and this

one would give us an advantage and it will produce the fastest learning neural network of its kind.

6.2 Minimum Number of Epochs Needed for the Neural Network to Con-

verge Using a Large Sample

The data homogeneity expressed by a variety of measures, parametric and non-parametric, such as:
variance, variance-covariance matrices, range, cross correlation, or various similarity measures, is
an important component relating to the number of epochs needed to teach the neural network to
classify the inputs in the correct class with high probability. The number of training samples, the
number of validation samples, and the number of test samples are a function of the neural network
architecture, which includes the input vector and its characteristics, the number of hidden layers,
the number of neurons per hidden layer, and finally the output layer.

The characteristics of the input layer include the number of elements of the input vector, and
dependencies between the input vector components. As we pointed out in previous sections weight
initialization and learning rate strategies can affect the convergence of the neural network. The law
of large numbers that applies to the parameter estimation theory in statistics, applies to properly

constructed neural networks as well. The ideas of sampling theory and experimental design apply
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to neural networks also. The concept of “epochs,” however, is unique to neural networks.

Logically the probability of correct classification should increase as the number epoch increases,
to a certain extent where the network is actually learning instead of diverging. This is not always
the case. In all the experiments we performed so far, we observed that the probability of correct
classification could decrease from one epoch to the next, especially in the initial epochs. As the
epoch number increases the probability of correct classification reaches its maximum value for the
first time at a certain epoch number k, then for the following few epochs the probability of correct
classification often fluctuates with values less than the maximum value, and finally stabilizes at a
the maximum or a value close to the maximum, remaining there within a small € for the following
epochs in a steady state. At this point, it is feasable to admit that the network stalled and will
not learn further. Extra training may result in overfitting or learning decay. The concept of early
stopping when the stable state is detected has been studied, involving halting training once the
network stops learning at a significant rate to avoid these drawbacks [56].

The number of epochs needed for a network to attain its maximum probability of correct clas-
sification, epoch of maximum classification, is a random variable that depends on many factors,
including the neural network architecture, weight initialization strategy, number of training sam-
ples, learning rate and learning rate adjustment strategy. The number of epochs needed for the
neural network to come to a steady state is also a random variable depending on the same factors.

Let C.;; be the classification accuracy for network j, using initialization strategy ¢ at epoch e.
We define here the epoch-speed-of-learning € for a neural network with a given architecture, set of
training samples, weight initialization strategy, learning rate and learning rate adjustment strategy
as Vk,l > é,|Cr;j — Ci;j| < € for a small e. This is, the epoch-speed-of-learning is the minimum
number of epochs needed for a neural network to come to a steady state.

Clearly, it is preferred to attain a small epoch of maximum classification and a small epoch speed
of learning while maximizing the classification accuracy obtained in each of these epochs.

The selection of initialization strategy impacts the epoch where a network attains its maximum
classification as well as the epoch-speed-of-learning of the network. We claim that initialization
strategies deemed best among the set of tested strategies by our quantitative method will also
give best epoch of maximum classification and epoch-speed-of-learning with greater classification

accuracy than the other strategies.

6.3 Application of the Theory

We applied all these ideas in our experiment using four different, widely recommended weight ini-

tialization strategies selected from our survey to determine if different weight initialization strategies
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actually offered different convergence rate results.

The methods we applied as weight initialization strategies for our experiment were:

1. w; = uniform(—1,1) - 0.5

2. w; = uniform(—1,1) - 4\/6 (fan_in; + fan_out;)” "
3. w; = gaussian_random(0, 1)

4. w; = gaussian_random(0, 1/+/fan_in;)

and throughout the rest of this paper we will refer to them mostly by number,

One of the most important and most widely used algorithms for neural network training is
backpropagation with gradient descent. Most of today’s state-of-the-art neural networks use this
algorithm or some variant or extension with modifications to suit the network specifics. Therefore, to
show how our theory works we chose one of the simplest variants of backpropagation using stochastic
gradient descent.

We trained 400 fully connected feedforward neural networks to recognize the MINIST dataset
of handwritten digits for our experiment using our custom neural network library. We trained 100

networks per weight initialization strategy.

6.3.1 Network Architecture

Each network we trained figured the same architecture, adapted to recognize the MNIST samples.

Each sample in the MNIST dataset is composed of the pixel intensity for each pixel in the image
and the label indicating what digit d that the image represents.

Each sample was used as-is without any kind of preprocessing or filtering before feeding it to the
neural network. The image is represented in gray scale with dimensions of 28 x 28 pixels, where each
pixel value is defined as the gray scale intensity, a value between 0 to 255, which we normalized in
the range [0, 1] using double precision floating point. The sample was arranged as a one-dimensional
array representing the two-dimensional image in row-major format, feeding the 784 input values to
the network.

The target output was mapped from the digit d to a vector of zeros and ones where all elements
are zero except for the element at position d which is one. For example the digit 4 is mapped to
D =(0,0,0,0,1,0,0,0,0,0).

Every network was composed of three layers: input layer with 784 input units, hidden layer with

45 fully connected sigmoid units and output layer with 10 fully connected sigmoid units.
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While we recognize that there are better architectures to improve recognition and convergence
rate, our design aimed to create simple networks that produce mutually comparable results regarding
weight initialization instead of producing state of the art recognition which is outside the scope of

this research.

6.3.2 Training Phase

The MNIST dataset is composed of 60000 training samples and 10000 training samples. We divided
the training samples into 10000 randomly selected validation samples and the remaining 50000
samples to use for actual training. The validation samples were selected once at the start and were
kept the same over the life of the experiment in order to avoid validation samples dependent results.
The testing during training was made over the validation samples until all epochs were completed.
Then, a final test was conducted over the testing sample. This ensures that our networks generalize
over any image, avoiding over fitting on the actual testing data.

Before training a network, its weights were initialized using the corresponding technique. At the
start of every epoch, all the training samples were randomized taking care that the order of the
samples in epoch e was always the same for every network. This guarantees that the only parameter
affecting the convergence rate is the weight initialization technique used.

Stochastic gradient descent was used to update the weights with a mini-batch size of m = 10.
Mini-batch size controls how many samples are shown to the network before updating the weights
by the accumulated error in each sample. So for the 50000 samples, 5000 mini-batches were shown

to the neural network in each epoch.

6.3.3 Testing Phase

Testing was performed after an epoch was completed using the validation samples. The test reports
the percentage of correct classification. Thus, the estimate of the probability of correct classification
. total_correct
at the end of epoch € is ———.
total _samples
After all epochs are completed, a final test is conducted using the testing sample set to ensure
that the neural network is able to generalize and classify correctly samples outside the training and
validation sets with high probability. In all trials of the experiment the generalization accuracy,
defined as the difference between validation test and final test, was below 0.05%.
In this research, we focus on the classification probability at the end of epoch 1, because this is

an indication of how fast the neural network is learning.
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6.3.4 Experimental Outcomes

Let pq, po, p3 and py be the mean probabilities for weight initialization strategies #1, #2, #3 and
#4 respectively.

Table 6.1, 6.2, 6.3 and 6.4 show the classification accuracy obtained after the first epoch of training
for each initialization strategy applied to 100 neural networks. In order to see if the fluctuations
reported in these results are significant or random, first we did a coarse grain analysis by testing
the null hypothesis Hy : p1 = po = g = pg. Table 6.5 shows the results of analysis of variance to
test the null hypothesis [71]. With F = 435.32, the results show that the fluctuations are indeed
significant with 95% confidence; therefore, the null hypothesis was rejected.

Further statistical investigation with results in Table 6.6 showed that pq and p4 are not signif-
icantly different. Results from Table 6.7 showed that the rejection of the null hypothesis is due to
the fact that us was statistically different than the other means, us was also statistically different
than gy and pg as seen in Table 6.8, but not as much, while Table 6.9 shows that po and ps are
significantly different.

Looking at the 95% confidence intervals of the means for the first epoch using the ¢ distribution
with 99 degrees of freedom we obtain: 94.81 < p1 < 94.90, 94.45 < pe < 94.64, 92.89 < ps < 93.07,
94.82 < g < 94.99.

It seems that the analysis of variance and means has led to results where the strategies, ordered
from worst to best for the specified architecture, are #3, #2, #1, #4, with strategies #1 and #4
offering similar convergence rates. Next we applied our theory to see if, in the extreme cases, there
is a chance of obtaining similar probabilities of correct classification in epoch 1 using weight initial-

ization strategies #1 and #3.

To apply our method, we need to find a probability distribution that fits the measurements of
each strategy we are going to compare.

The variables for epoch 1 probability distribution function of correct classification for each of
the strategies are random and based on the histogram of the sample data and using the Chi-square

goodness of fit, we concluded that the best probability distribution that fits the data is of the form
fei(p) = acip® + beip® + ceip® + deip + eci. (6.11)

where 7 is the weight initialization strategy and e is the epoch number.
We estimate the m = 5 parameters ae;, bej, Cei, de; and eg; of the distribution 6.11 using the
data collected and test the goodness of the fit with algorithm 3.

The histogram obtained from the experimental results is sensitive to the interval selection, and
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Table 6.1: 100 Independent Neural Network Trainings After 1 Epoch Using Weight Initialization
Strategy #1

Probability (%) Probability (%)
Network No. of Correct Network No. of Correct
Classification Classification

1 95.24 51 95.22
2 94.94 52 95.28
3 95.22 53 94.39
4 94.73 54 94.72
5 95.5 55 93.94
6 94.99 56 95.22
7 94.6 57 95.06
8 94.71 58 94.72
9 94.92 59 94.39
10 95.03 60 95
11 95.45 61 94.32
12 94.18 62 95.16
13 94.64 63 95.29
14 94.82 64 95.41
15 94.46 65 95.03
16 94.62 66 95.19
17 95.28 67 94.25
18 95.18 68 94.17
19 95.18 69 95.05
20 94.32 70 95.2
21 95.05 71 94.9
22 95.29 72 95.12
23 94.98 73 95.49
24 94.11 74 94.94
25 94.46 75 95
26 94.34 76 95.22
27 94.84 7 94.59
28 95.07 78 94.61
29 94.97 79 94.99
30 94.67 80 94.56
31 94.1 81 95.04
32 95.33 82 94.91
33 94.82 83 94.96
34 95.1 84 94.35
35 95.18 85 94.72
36 94.49 86 95.25
37 94.54 87 95.09
38 94.99 88 95.04
39 95.02 89 95.06
40 94.95 90 94.95
41 95.55 91 95.09
42 95.04 92 94.8
43 94.66 93 95.15
44 93.66 94 94.98
45 95.13 95 95.11
46 95.26 96 94.97
47 95.45 97 94.41
48 94.35 98 94.87
49 95.01 99 95.01
50 94.78 100 95.42

Mean 94.89 H Variance 0.14
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Table 6.2: 100 Independent Neural Network Trainings After 1 Epoch Using Weight Initialization
Strategy #2

Probability (%) Probability (%)
Network No. of Correct Network No. of Correct
Classification Classification

1 94.6 51 94.23
2 94.11 52 94.32
3 94.88 53 94.38
4 94.57 54 92.78
5 95.2 55 94.06
6 94.96 56 94.37
7 95.04 57 94.95
8 94.68 58 94.16
9 93.81 59 95
10 94.96 60 94.39
11 94.4 61 94.7
12 94.48 62 93.92
13 93.71 63 95.44
14 95.05 64 95.02
15 94.48 65 94.97
16 94.91 66 93.87
17 94.87 67 94.68
18 94.6 68 93.28
19 95.14 69 94.46
20 95.1 70 95.03
21 94.88 71 94.83
22 94.28 72 94.28
23 94.86 73 94.65
24 94.86 74 94.66
25 95.01 75 94.68
26 93.86 76 94.65
27 94.5 7 94.9
28 94.35 78 94.46
29 94.34 79 95.01
30 94.1 80 92.92
31 94.94 81 93.64
32 94.47 82 94.52
33 95.1 83 94.71
34 95.04 84 94.79
35 95.32 85 94.64
36 93.43 86 94.66
37 94.16 87 94.44
38 94.45 88 94.78
39 94.71 89 94.03
40 94.64 90 94.69
41 94.69 91 94.41
42 93.94 92 94.47
43 94.79 93 94.97
44 94.16 94 94.66
45 94.67 95 94.68
46 95.21 96 94.96
47 94.46 97 95.01
48 94.38 98 94.42
49 94.54 99 94.52
50 94.09 100 94.92

Mean 94.55 H Variance 0.23
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Table 6.3: 100 Independent Neural Network Trainings After 1 Epoch Using Weight Initialization
Strategy #3

Probability (%) Probability (%)
Network No. of Correct Network No. of Correct
Classification Classification
1 93.08 51 93.17
2 93.11 52 93.06
3 92.33 53 92.6
4 92.87 54 93.1
5 92.86 55 92.71
6 92.75 56 93.06
7 92.64 57 93.4
8 93.52 58 93.68
9 93.09 59 93.35
10 93.47 60 92.56
11 93.04 61 92.48
12 92.93 62 92.84
13 92.52 63 92.99
14 93.12 64 92.92
15 93.04 65 92.93
16 93.16 66 93.29
17 92.97 67 92.37
18 93.46 68 93.37
19 93.04 69 93.05
20 93.34 70 92.7
21 93.94 71 93.58
22 92.89 72 93.44
23 92.9 73 93.15
24 92.98 74 93.12
25 93.88 75 92.31
26 93.15 76 92.19
27 92.77 7 92.8
28 92.71 78 92.34
29 92.69 79 93.33
30 93.56 80 93.36
31 93.17 81 93.94
32 92.88 82 92.89
33 92.02 83 92.9
34 93.13 84 92.98
35 93.04 85 93.88
36 93.63 86 93.15
37 93.05 87 92.77
38 92.94 88 92.71
39 91.64 89 92.69
40 92.62 90 93.56
41 93.73 91 93.17
42 92.71 92 92.88
43 92.68 93 92.02
44 93.24 94 93.13
45 92.28 95 93.04
46 92.64 96 93.63
47 91.98 97 93.05
48 92.99 98 92.94
49 93.59 99 91.64
50 93.39 100 92.62
Mean 92.98 H Variance 0.21
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Table 6.4: 100 Independent Neural Network Trainings After 1 Epoch Using Weight Initialization
Strategy #4

Probability (%) Probability (%)
Network No. of Correct Network No. of Correct
Classification Classification
1 95.25 51 94.56
2 94.91 52 94.4
3 93.93 53 95.5
4 94.68 54 95.44
5 94.73 55 94.79
6 94.62 56 94.99
7 94.93 57 95.64
8 95.44 58 95.44
9 94.92 59 94.99
10 94.02 60 95.01
11 94.6 61 94.43
12 94.91 62 95.14
13 94.62 63 95.31
14 95.07 64 95.3
15 93.86 65 95.4
16 95 66 95.53
17 94.49 67 94.34
18 94.81 68 94.73
19 95.15 69 95.14
20 95.24 70 94.73
21 94.61 71 94.73
22 95.09 72 95.56
23 95.02 73 94.89
24 95.16 74 94.92
25 94.7 75 94.25
26 94.71 76 94.54
27 95 7 95.36
28 94.64 78 94.63
29 94.4 79 95.37
30 94.99 80 94.87
31 94.07 81 95.08
32 93.58 82 95.58
33 95.33 83 95.55
34 95.37 84 94.98
35 94.65 85 95.2
36 95.03 86 94.73
37 95.02 87 93.98
38 95.46 88 94.2
39 95.09 89 94.79
40 94.79 90 94.1
41 95.21 91 95.03
42 95.16 92 94.89
43 95.72 93 94.67
44 95.41 94 94.39
45 94.07 95 94.97
46 94.95 96 95.2
47 94.98 97 95.03
48 95.44 98 95.03
49 94.95 99 95.49
50 95.26 100 94.77
Mean 94.91 H Variance 0.19
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the neural network noise due to the weight initialization, learning rate selection, and neural network

design. These factors also affect the goodness of fit of the model with the histogram.

Table 6.5: ANOVA results for testing the null hypothesis Hq : g1 = pa = pz = pa.

Source Sum of Squares Degrees of MSE
Freedom
Between-treatments 251.34 3 83.78
Within-treatments 76.21 396 0.1925
Total 327.55 399 F =435.32

Table 6

.6: ANOVA results for

testing whether p

1 and py are

significantly different.

Table 6.7:

Table 6.8:

Source Sum of Squares Degrees of MSE
Freedom
Between-treatments 0.0166 1 0.0166
Within-treatments 33.03 198 0.1668
Total 33.04 199 F =0.0993

ANOVA results for testing whether py, pus and py are significantly different.

Source Sum of Squares Degrees of MSE
Freedom
Between-treatments 245.06 2 122.5301
Within-treatments 53.75 297 0.181
Total 298.81 299 F =677.00

ANOVA results for testing whether py, ue and py are significantly different.

Source Sum of Squares Degrees of MSE
Freedom
Between-treatments 8.1692 2 4.0846
Within-treatments 55.49 297 0.1868
Total 63.65 299 F =21.864

Table 6.9: ANOVA results for testing whether ps and us are significantly different.

Source Sum of Squares Degrees of MSE
Freedom
Between-treatments 122.85 1 122.85
Within-treatments 43.18 198 0.2181
Total 166.04 199 F =563.27
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Table 6.10: Parameter estimation for probability density function fi1(z) for strategy #1 in epoch
1.

Parameter Estimated value
ail —5.9939047533296919 x 10°
b11 22556963627.494751 x 1010
11 —3.1832342639344265 x 1010
di1 1.9964573972344696 x 10*°
€11 —4.6953597466079311 x 10°

From Table 6.1, representing weight initialization strategy #1, namely w; = uniform(—1,1)-0.5,
we see that for epoch 1, the probability of correct classification is in the interval [0.9366, 0.9555] and
we have J = 100 measurements.

As algorithm 3 indicates, we need to estimate the parameters for the distribution f11(p) with the
form specified in 6.11, where 0.9366 < p < 0.9555. The parameters are shown in Table 6.10.

Let’s consider k = 17 intervals. Let A; be the area under the probability distribution f11(p) for
interval i. We compute A; using numerical integration. Note that Vi, 4; < 1 and ZA,» = 1. The

i
number of expected samples in the i-th interval F; is E; = nA;. Table 6.11 shows the actual (O;)
and expected (E;) number of samples per interval.
Using the existing data we can compute the Chi-square value for this dataset:

17
0; — E;)?
2= ZQ = 15.76

with K — 1 — m = 11 degrees of freedom. This value is below the Chi-square critical point for 5%
significance, therefore, the proposed function is a good fit as the probability density function to

represent the sampled data.

Algorithm 3 Procedure to test the goodness of fit of a probability density function to the classifi-
cation data.

1: Using the sample data, estimate parameters for the distribution to test.
Based on the range of the sample data, create k intervals.
Count the number of samples O;, i € 1,2, ..., k that fall in interval 3.
Compute the area under the distribution curve in each interval.
Find the number of expected samples F; for interval i.
k 2
6: Compute the Chi-squared value y? = Z (Ol_iEZ)
i=1 E;
7: Compare x? with the Chi-square critical value at the proper degrees of freedom and significance
level. If x? is less than the critical value, then, the proposed distribution is a reasonable model
for the data.

92

www.manaraa.com



From the estimated probability density function we obtain the cumulative distribution function:

Fii(p) = /Op f11(p)dp. (6.12)

.9366

The probability density function of the minimum of the 100 random variables for epoch 1, is:

fmin(p) = 100(1 = Fy1(p))? f11(p). (6.13)

By theorem 6.1.2:

0.9555
i () = / 100p(1 = Fi1 (p)® fur (0)dp
0.9366

0.9555 0.9555
= fp = Eae) | [ Ea )™ (6.14)
0.9366  0.9366
= 0.93866.
In a similar way, using the formulas obtained in theorem 6.1.2, 02, = 8.67975-1075 for strategy

#1.

Table 6.11: Division of range [0.9366,0.9555] using k = 17 intervals of equal length with actual and
expected number of samples per interval with data from strategy #1.

Interval No. Interval Actual No. | Expected No.
of Samples of Samples
1 [0.9366,0.9377) 1 0.43
2 [0.9377,0.9388) 0 0.37
3 [0.9388,0.9399) 1 0.52
4 [0.9399,0.9410) 1 0.93
5 [0.9410,0.9422) 3 1.61
6 [0.9422,0.9433) 3 2.59
7 [0.9433,0.9444) 6 3.81
8 [0.9444,0.9455) 4 5.21
9 [0.9455,0.9466) 7 6.73
10 [0.9466,0.9477) 6 8.26
11 [0.9477,0.988) 6 9.68
12 [0.9488,0.9499) 15 10.83
13 [0.9499,0.9510) 18 11.52
14 [0.9510,0.9522) 10 11.60
15 [0.9522,0.9533) 11 10.80
16 [0.9533,0.9544) 8.88
17 [0.9544,0.9555] 5.57
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Now, consider weight initialization strategy #3, namely w; = gaussian_random(0,1), and the
data from Table 6.3, pertaining to the probability of recognition in epoch 1. The probability of
correct classification is in the interval [0.9164,0.9394] and we have J = 100 measurements. Using
a similar method as with previous strategy, we can find a probability density function that fits the
data. Table 6.12 shows the coefficients estimated for the probability density function fi3 with the
form specified by equation 6.11 where 0.9164 < p < 0.9408.

From the estimated probability density function we obtain the cumulative distribution function:

Fua(p) = /0 " hs)dp. (6.15)

19164

The probability density function of the maximum of the 100 random variables for epoch 1, is:

fmax(p) = 100(F15(p))* f13(p). (6.16)

By theorem 6.1.2:

0.9408
(D) = /O 100p(Fis(p)* fus(p)dp

9164
0.9408 0.9408
—pFae)®) = [ (Fam) (6.17)
0.9164 0.9164
= 0.9396.
In a similar way, using the formulas obtained in theorem 6.1.1, 02, = 6.10439 - 10~".

At this point, we have to determine whether fimar + Gmaz02iae < Hmin — Gmin0 2y, With 95%
probability, which means that the maximum of strategy #3 will never reach the minimum of strategy
#1, or whether they overlap. In this case, the distributions for the maximum of strategy #3 and
minimum of strategy #1 overlap (tmin < fmaz). While it is clear that the probability of expected
maximum for strategy #3 to reach the expected overall value of strategy #1 is very small, we must
determine what is the probability that the former will outperform the latter.

Using a data driven approach we can see that the maximum recognition achieved by strategy #3

among the 100 networks on epoch 1 was 93.94% while the minimum recognition achieved by strategy

Table 6.12: Parameter estimation for probability density function fi3(x) for strategy #3 in epoch

1.
Parameter Estimated value
a3 4.617722411661846 x 10°
bis —1.718670140594357 x 10'°
c13 2.398649025864387 x 100
di3 —1.487772596119842 x 10'°
€13 3.460316849703402 x 10°
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#1 among the 100 networks on epoch 1 was 93.66%. For strategy #1 there is only 1 instance where
recognition is below the maximum recognition achieved by strategy #3, while there are 6 instances in
which strategy #3 outperforms strategy #1. The accuracy achieved by one strategy is independent
from the other strategy, so, the probability that strategy #3 will outperform #1 is the probability
that the accuracy achieved by #3 is above that of #1, given that the accuracy of #1 was the instance
where it under performs. The result is WIO . % = ﬁ = 0.06%.

This is a data-driven result; however, since the expected minimum and maximum values and the
variances were computed based on the data, an analytic result using those values would yield similar
probabilities.

Then, we see that the probability of strategy #3 outperforming strategy #1 is very small (0.06%).
Therefore, strategy #1 is superior to strategy #3.

Our original experiment only had 20 networks per strategy and the real nature of the probability
distribution could not be described very well, so, we applied our theory using uniform distribution
fits. The predictions that strategy #1 was superior to #3 and that there was no significant difference
among #1 and #4 were the same. We increased the number of networks to 100 to obtain a better
representation of the behavior of the distributions, allowing us to fit more complex functions that
represented the probability better, obtaining more accurate numerical results. For practical pur-
poses, it seems that a reduced number of networks per strategy and a much simpler fit using uniform
distributions will produce similar predictions. This last statement, however, requires further study

to investigate how much can the number of networks be reduced and what other factors would alter

the predictions.

6.3.5 Impact of Initialization Strategy on Network Convergence

To assess the validity of the result obtained from our quantitative method, we proceeded to train
all of the 400 neural networks for 60 epochs each. The objective was to compare the results of the
actual complete training for each initialization strategy and how the maximum recognition, epoch
of maximum recognition, epoch-speed-of-learning and stabilization accuracy behave in relation to
the initialization strategy used.

Table 6.17 summarizes the dependency of epoch of maximum recognition and the epoch-speed-
of-learning with ¢ = 0.01 on weight initialization strategies for four networks (one per strategy)
that can be seen in Table 6.13, 6.14, 6.15 and 6.16.

We created a histogram per strategy for the number of epochs needed by each neural network
to reach maximum recognition, maximum recognition accuraccy achieved, epoch-speed-of-learning

and stabilization accuraccy for each neural network.
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Table 6.13: Accuracy per epoch for a single neural network training for initialization strategy #1

Probability (%) Probability (%)
Epoch No. of Correct Epoch No. of Correct
Classification Classification
1 95.24 31 96.99
2 95.51 32 96.97
3 96.08 33 97.04
4 95.48 34 97
5 95.99 35 96.96
6 96.33 36 96.98
7 96.42 37 96.99
8 96.04 38 97.02
9 96.77 39 96.99
10 96.73 40 96.98
11 96.96 41 96.99
12 96.84 42 97.01
13 96.98 43 96.99
14 96.6 44 97
15 96.97 45 97
16 96.85 46 97
17 96.98 47 96.99
18 96.99 48 96.99
19 96.98 49 96.99
20 97 50 96.99
21 96.97 51 96.99
22 97.05 52 97
23 97.06 53 97
24 97.04 54 97
25 96.98 55 97
26 97.02 56 97
27 97 57 97
28 96.97 58 97
29 97.04 59 97
30 97.01 60 97
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Table 6.14: Accuracy per epoch for a single neural network training for initialization strategy #2

Probability (%) Probability (%)
Epoch No. of Correct Epoch No. of Correct
Classification Classification
1 94.6 31 96.95
2 95.6 32 96.85
3 95.85 33 96.93
4 95.94 34 96.91
5 96.07 35 96.92
6 96.32 36 96.92
7 96.46 37 96.93
8 96.34 38 96.92
9 96.52 39 96.93
10 96.56 40 96.93
11 96.48 41 96.89
12 96.76 42 96.95
13 96.87 43 96.92
14 96.85 44 96.93
15 97.01 45 96.92
16 96.92 46 96.93
17 96.86 47 96.94
18 96.87 48 96.93
19 97.05 49 96.93
20 96.97 50 96.93
21 97.01 51 96.92
22 96.93 52 96.92
23 96.89 53 96.92
24 96.96 54 96.92
25 96.94 55 96.92
26 96.94 56 96.92
27 96.96 57 96.92
28 96.94 58 96.92
29 96.93 59 96.92
30 96.9 60 96.92
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Table 6.15: Accuracy per epoch for a single neural network training for initialization strategy #3

Probability (%) Probability (%)
Epoch No. of Correct Epoch No. of Correct
Classification Classification
1 93.08 31 96.22
2 94.17 32 96.24
3 94.04 33 96.18
4 95.09 34 96.22
5 95.11 35 96.2
6 95.5 36 96.24
7 95.18 37 96.2
8 95.49 38 96.24
9 95.31 39 96.21
10 95.91 40 96.21
11 95.75 41 96.23
12 96.17 42 96.21
13 95.93 43 96.21
14 96.05 44 96.23
15 95.97 45 96.23
16 96.13 46 96.23
17 96.04 47 96.24
18 96.14 48 96.23
19 96.23 49 96.22
20 96.11 50 96.23
21 96.12 51 96.22
22 96.15 52 96.22
23 96.2 53 96.22
24 96.16 54 96.22
25 96.22 55 96.23
26 96.13 56 96.23
27 96.24 57 96.22
28 96.19 58 96.22
29 96.19 59 96.23
30 96.21 60 96.23
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Table 6.16: Accuracy per epoch for a single neural network training for initialization strategy #4

Probability (%) Probability (%)
Epoch No. of Correct Epoch No. of Correct
Classification Classification
1 94.62 31 97.01
2 95.75 32 97.02
3 95.73 33 97.04
4 96.28 34 97.02
5 96.23 35 96.99
6 96.13 36 97.01
7 96.38 37 97.03
8 96.53 38 97.04
9 96.52 39 97.04
10 96.92 40 97.03
11 96.86 41 97.03
12 96.91 42 97.03
13 96.93 43 97.03
14 96.88 44 97.04
15 96.91 45 97.04
16 97.01 46 97.02
17 97.01 47 97.02
18 97.01 48 97.02
19 97.07 49 97.02
20 96.95 50 97.02
21 97.02 51 97.02
22 96.99 52 97.02
23 97.05 53 97.02
24 96.99 54 97.02
25 97.07 55 97.02
26 97.01 56 97.02
27 97.07 57 97.02
28 97.04 58 97.02
29 97.03 59 97.02
30 97.03 60 97.02
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Table 6.17: Maximum and stabilization accuracy per strategy based on Table 6.13, 6.14, 6.15 and
6.16.

Strategy No. 1 2 3 4
Maximum % 97.06 | 97.05 | 96.24 | 97.07

Max. Epoch No. 23 19 27 19
Stabilization % 97.00 | 96.92 | 96.22 | 97.02

Epoch-Speed-of-Learning 43 48 48 46

With these histograms we estimated best model probability functions using the Chi-Square test
as explained by the procedure in algorithm 3. The Gaussian distribution proved to be the best fit
for all except for the number of epochs needed for the neural network to obtain its maximum value
for the first time. In that case, the best fit as determined by the Chi-Squared test, was found to be
a Gamma distribution of the form:

xole—2/B
f(z) = W (6.18)
where I'(z) is the Gamma function, « is the shape parameter and § is the scale parameter of the
Gamma distribution.

The histograms and the best fits are shown in Figure 6.1, 6.2, 6.3 and 6.4.

Using the data obtained for the epoch of maximum recognition and the epoch-speed-of-learning,
we performed an analysis of variance to determine whether the results are significantly different or
not. We formulated four null hypotheses: H} : fi1max = H2max = M3 max = fdmax Where fi; max iS
the mean of the maximum recognition attained by all networks using the i-th initialization strategy;
Hg D Miresl = Moresl = [M3res]l = [dresl Where [i;es1 1S the mean of the recognition for the epoch-
speed-of-learning attained by all networks using the i-th initialization strategy; Hg’ ! Uimax_epoch =
H2omax_epoch = [3max_epoch = Mdmax_epoch WHEre flimax epoch iS the mean epoch where the maximum
recognition was attained by all networks using the i-th initialization strategy; Hé1 D fles] = M2es] =
H3esl = M4es] Where ;5 is the mean of the epoch-speed-of-learning for all networks using the i-th
initialization strategy.

Table 6.18, 6.19, 6.21 and 6.20 show the results of the analysis of variance to test the four null
hypotheses.

The results indicate that there is a statistically significant difference with 95% confidence among
the maximum recogition accuracy that the strategies can achieve, thus rejecting the null hypothesis
H&. A second analysis of variance performed to test the null hypothesis H(’)1 D Ulmax = M2max =
144 max Shows that there is some significant difference among strategies #1, #2 and #4, but not as

marked as with strategy #3 (an analysis of variance between strategies #1 and #4 showed that

100

www.manaraa.com



there is no statistically significant difference between them) therefore, strategy #3 is the outlier.

Finding the 95% confidence interval of the

means using the ¢ distribution with 99 degrees of

freedom we see that 96.94 < g max < 96.98, 96.88 < o max < 96.94, 96.48 < pzmax < 96.54 and

96.94 < pgmax < 96.98. Because the expected maximum recognition accuracy that strategy #3 can

achieve is smaller than all other strategies, we ca

as we had already predicted using our quantitat

n conclude that strategy #3 is inferior to the others

ive measure.

A similar analysis applying analysis of variance rejects the null hypothesis H3. Further study

shows again that strategy #3 is the outlier and inferior to the others as predicted with 95% confidence

interval of the means using the ¢ distribution with 99 degrees of freedom: 18.96 < 41 max epoch <

21.06, 20.64 < 2 max epoch < 23.20, 22.82 < 13 max epoch < 25.46 and 18.64 < fig max epoch < 21.22.

We can see how, not only strategy #1 can rea

strategy #3, but it will do so earlier in training
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Figure 6.1: Epoch of maximum recognition histograms and Gamma distribution fit for initialization

strategies.

(a) Histogram for strategy #1 with u = 20.01 and o = 28.09; (b) histogram for strategy #2 with pu = 21.92
and o = 41.33; (c) histogram for strategy #3 with p = 24.14 and ¢* = 44.1; (d) histogram for strategy #4

with g = 19.93 and o = 42.07.
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Figure 6.3: Epoch-Speed-of-Learning histograms and Gaussian distribution fit for initialization
strategies.

(a) Histogram for strategy #1; (b) histogram for strategy #2; (c) histogram for strategy #3; (d) histogram
for strategy #4.
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Figure 6.4: Epoch-Speed-of-Learning recognition accuracy histograms and Gaussian distribution fit
for initialization strategies.

#1; (b) histogram for strategy #2; (c) histogram for strategy #3; (d) histogram
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Table 6.18: ANOVA results for testing the null hypothesis H& D M1 max = M2 max = H3max = M4 max-

Degrees of

Source Sum of Squares MSE
Freedom
Between-treatments 13.957 3 4.652
Within-treatments 7.042 396 0.0178
Total 20.999 399 F =261.63

Table 6.19: ANOVA results for testing the null hypothesis HJ :
H3max_epoch = M4max_epoch-

Himax_epoch =

H2max_epoch =

Source Sum of Squares Degrees of MSE
Freedom
Between-treatments 1183.1 3 394.37
Within-treatments 15558.9 396 39.29
Total 16742 399 F =10.04

Table 6.20: ANOVA results for testing the null hypothesis H3 : fi1res] = Hares] = Hares] = [dresl-

Table 6.21:

Source Sum of Squares Degrees of MSE
Freedom
Between-treatments 13.831 3 4.61
Within-treatments 8.134 396 0.0205
Total 21.965 399 F =224.45

ANOVA results for testing the null hypothesis Hy : fi1es] = f2es] = M3es] = fdesl-

Source Sum of Squares Degrees of MSE
Freedom
Between-treatments 1260.64 3 420.22
Within-treatments 6708.85 396 16.942
Total 7969.49 399 F =248

Finally, looking at the epoch-speed-of-learning, analysis of variance rejects the null hypothesis

H} indicating that there is significant difference among the epoch-speed-of-learning for each strategy.

A second analysis of variance performed to test the null hypothesis H(’)4 D Hles] = M2es] = [lges] Shows

that there is some significant difference among strategies #1, #2 and #4, but not as marked as with

strategy #3. Another analysis of variance between strategies #1 and #4 showed that there is no

statistically significant difference between them. Therefore, once more, strategy #3 is the outlier.

Finding the 95% confidence interval of the means using the ¢ distribution with 99 degrees of

freedom we see that 41.30 < pyeq < 42.84, 43.12 < pigeg) < 44.76, 45.78 < pgest < 47.36 and
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Figure 6.5: Learning curve for all 4 initialization strategies.

Notice how strategies #1 and #4 are close together reaching highest stabilization accuracy around the same
epoch-speed-of-learning. They are followed closely by strategy #2 and strategy #3 is a distant fourth place
as predicted.

41.55 < piges1 < 43.27. Because the expected epoch-speed-of-learning for strategy #3 is smaller than
all other strategies, we can conclude that strategy #3 is inferior to strategy #1. Furthermore, using
the same technique we reject the null hypothesis HZ we find the confidence interval for the means to
be 96.83 < pi1res < 96.89, 96.80 < piores1 < 96.86, 96.40 < pgres < 96.46 and 96.84 < figres1 < 96.90.

Again, notice the correlation between the stable recognition that a network can achieve and at
what epoch the stabilization occurs with the weight initialization strategy applied before training.
A superior initialization strategy will also help the network stabilize earlier and achieve better stable
recognition.

Finally, Figure 6.5 summarizes the average training accuracy for each strategy. We can see how
strategies #1 and #4 each reach similar maxima, peaking around the same epoch and achieving
similar stabilization accuracy around the same epoch-speed-of-learning. Strategy #2 follows closely

with the second best accuracy and epoch-speed-of-learning where strategy #3 is a distant fourth

place as predicted.
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6.4 Results

In this research we developed a theory that allows for the quantitative comparison between initial-
ization strategies for neural networks and assess whether the fluctuations of the convergence rate
and accuraccy are due to the random nature of the initialization strategies or due to the fact of one
strategy being superior to the other. The method compares parameter initialization strategies based
on the classification results of the first epoch instead of having to proceed with the time consuming
training and compare the results after training completes. We applied our theory to four different
initialization strategies, each applied to 100 neural networks with the same architechture, trained
to recognize the MNIST dataset of handwritten digits using the backpropagation algorithm. Our
theory predicted that one of the strategies was inferior to the others from the quantitative results.
We proceeded to train every network over 60 epochs to assess whether the prediction was correct.
The results of actual training showed that the prediction was right and not only superior initial-
ization strategies help a neural network to minimize the classification error, but the epoch where a
network reaches maximum recognition for the first time and the epoch where the network stabilizes
and stops learning (epoch-speed-of-learning) appears faster in training, saving precious training time

with smaller epoch numbers for early stopping.
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Appendix A

Standard HE and Enhanced IWHE

Implementation in C#

This implementation is .NET 4 compliant and was compiled and tested using Microsoft Visual
Studio 2015 and Mono 4.8. The following listing makes use of our proprietary C++/CLI .NET 4.0
compliant library, compatible with .NET Bitmap and Image objects, that allows fast and parallel
access and modification of image pixel data to the color channel granularity as well as including
some tools to create histograms from loaded images. Our custom image processing library is not
included in this appendix.

As a disclaimer, the following code, as of this writing, is offered as is for reference purposes, even
though it is fully functional. It is constantly tested, maintained, optimized and debugged. The use
of this code is at the user’s own willingness and the creator of this code shall not be held responsible

for any liability resulting from any form of use of this code.

using System;

using System. Collections . Generic;

using System.Threading. Tasks;

using KImageProcessing; // Custom bitmap library written in C++/CLI
// that allows fast access to image pixel data

namespace HistogramEq

{

public static class HE

{

private static void swap<I>(ref T _A, ref T _B)

{
T .C = _A;
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A = B;
B = _C;
}

/// <summary>

/// Applies median filter to the specified grayscale bitmap.

/// </summary>

private static void medFilter (out GrayScaleMap result , GrayScaleMap
— bmGray)

{

GrayScaleMap retval = new GrayScaleMap (bmGray.Width, bmGray. Height

= );

for (int y = 0; y < bmGray.Height; y++)
for (int x = 0; x < bmGray.Width; x++)

{
int a, b, ¢, d;
int delta;
delta = (y — 1 <0 7?71 : —1);
a = bmGray. Pixels [x, y + delta];
delta = (y + 1 >= bmGray.Height ? -1 : 1);
b = bmGray. Pixels [x, y + delta];
delta = (x — 1 < 0?1 : —1);
¢ = bmGray. Pixels [x + delta, y];
delta = (x + 1 >= bmGray.Width ? -1 : 1);
d = bmGray. Pixels [x + delta, y];
if (a > c¢)
swap (ref a, ref c);
if (b>d)
swap(ref b, ref d);
if (a > b)
swap (ref a, ref b);
if (¢ > d)
swap (ref c, ref d);
retval. Pixels[x, y] = (b 4+ ¢) > 1;
}
result = retval;

}

/// <summary>
/// Performs enhanced IWHE with average intensity for bucket spread
/// after median filter denoising on the specified grayscale bitmap.
/// </summary>
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public static void ExEqualize_Ave(out GrayScaleMap result , out
— Histogram resultH ,
GrayScaleMap bmGray, Histogram.ColorComponent hist , int ilimitY)

Dictionary<int , System.Drawing.Point> dictRegions;
const double inv_9 = 1.0 / 9.0;

GrayScaleMap bml;
Histogram hl;

medFilter (out bml, bmGray);
hl = new Histogram (bml) ;

GrayScaleMap bmEq;
Histogram hEq;
Histogram . ColorComponent histEq;

IWEqualize (out bmEq, out hEq, bml, hl.Intensity , ilimitY);
histEq = hEq.Intensity;

if (hl != null)
hl.Dispose () ;
if (bml != null)
bml. Dispose () ;

dictRegions = new Dictionary<int , System.Drawing.Point>();
int prev = 0;
int last = —1;
for (int i = 0; i < histEq.Count; i++)
if (histEq[i] > 0)
{
if (last >= 0)

int next = ((last + 1) >> 1);
if (prev > 2)

prev — 2;
if (next < 254)
next += 2;

dictRegions.Add(last , new System.Drawing.Point(prev, next));
prev = ((last + 1) >> 1) + 1;

}
last = i;

dictRegions.Add(last , new System.Drawing.Point(prev, histEq.Count
= = 1));

GrayScaleMap retval = new GrayScaleMap (bmEq. Width, bmEq. Height) ;

for (int y = 0; y < bmEq.Height; y++)
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for (int x = 0; x < bmEq.Width; x++)
{
int i_xy;
int min = 256;
int max = —1;
double ave = 0.0;
for (int dy = —1; dy <= 1; dy++)
for (int dx = —1; dx <= 1; dx++)
{
int _dx
int _dy

dx;
dy;

if (x 4+ dx < 0 || x 4+ -dx >= bmEq. Width)
dx = —_dx;

if (y+ .dy <0 || y + -dy >= bmEq. Height)
-dy = —.dy;

i_xy = bmEq. Pixels[x + dx, y + _dy];
if (i-xy < min)
min = i_xy;
if (i-xy > max)
max = i_xy;
ave += (i_xy * inv_9);

}

i_xy = bmEq. Pixels[x, y];
if (max = min)
retval . Pixels[x, y] = i-xy;
else
{
System . Drawing. Point range = new System.Drawing.Point () ;
if (!dictRegions.ContainsKey(i-xy))
{
foreach (System.Drawing.Point pt in dictRegions.Values)
if (pt.Y >= i_xy)

range = pt;
break;
}
}
else
range = dictRegions[i_xy |;
retval . Pixels[x, y] = (int)((range.Y — range.X) * (ave — min
— ) / (max — min) + range.X);
}

}

if (hEq != null)
hEq. Dispose () ;
if (bmEq != null
bmEq. Dispose () ;
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result = retval;
resultH = new Histogram (retval);

}

/// <summary>

/// Performs enhanced IWHE on the specified grayscale

/// bitmap.

/// </summary>

public static void ExEqualize(out GrayScaleMap result , out Histogram
— resultH,
GrayScaleMap bmGray, Histogram.ColorComponent hist , int ilimitY)

{

ExEqualize_Ave(out result, out resultH, bmGray, hist, ilimitY);

}

/// <summary>

/// Performs IWHE on the specified grayscale bitmap.

/// </summary>

public static void IWEqualize (out GrayScaleMap result , out Histogram
< resultH , GrayScaleMap bmGray,
Histogram . ColorComponent hist, int iMaxIntensity, int ilimitY)

{
double limitY = (ilimitY = bmGray.Length) / 100.0;

int [] CH;
double d;

CH = new int [256];

d = iMaxIntensity / (double) (bmGray.Length);

GrayScaleMap retval = new GrayScaleMap (bmGray.Width, bmGray.Height
= )

int acc = 0;

int imax = 0;

while (imax < 255 && acc < limitY)
acc += hist [imax++];

if (imax > 0)
d /= imax;

CH[0] = hist [0];
for (int i = 1; i < hist.Count; i++)
CH[i] = CH[i — 1] + hist[i];

for (int i = 0; i < bmGray.Length; i++)
{
int clr = (int) (CH[bmGray.Pixels[i]] % d * bmGray.Pixels[i]);
if (clr > iMaxIntensity)
clr = iMaxIntensity;
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else if (clr < 0)

clr = 0;
retval . Pixels[i] = clr;
¥
result = retval;
resultH = new Histogram (retval);

}

/// <summary>

/// Performs IWHE on the specified grayscale bitmap.

/// </summary>

public static void IWEqualize(out GrayScaleMap result , out Histogram
— resultH , GrayScaleMap bmGray,
Histogram .ColorComponent hist , int ilimitY)

{

IWEqualize (out result , out resultH, bmGray, hist, 255, ilimitY);

}

/// <summary>

/// Performs standard histogram equalization on the specified

/// grayscale bitmap.

/// </summary>

public static void Equalize (out GrayScaleMap result, out Histogram
— resultH , GrayScaleMap bmGray,
Histogram . ColorComponent hist , int lowerBound, int upperBound, int

< minlntensity , int maxIntensity)

GrayScaleMap retval = new GrayScaleMap (bmGray.Width, bmGray. Height
= )5
int [] CH = new int [hist.Count];

double d = maxIntensity / (double)(bmGray.Length);

CH|[lowerBound] = hist [lowerBound |;
for (int i = lowerBound + 1; i <= upperBound; i++)
CH[i] = CH[i — 1] + hist[i];

Parallel .For (0, bmGray.Length, (i) =
{

int value = bmGray. Pixels[i];
if (value < lowerBound)

retval.Pixels[i] = minIntensity;
else if (value > upperBound)

retval . Pixels[i] = maxIntensity;
else

{

int respix = (int)(CH[value] * d);
if (respix < minIntensity)

respix = minlntensity;
else if (respix > maxIntensity)
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}
}

}

respix = maxIntensity;

retval . Pixels[i] = respix;
}
P
result = retval;
resultH = new Histogram (retval);
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Appendix B

Feedforward Neural Network

Library Implementation in C++4

The following code is C++11 compliant. It requires Intel Math Kernel Library and an OpenCL
implementation installed (it was tested using Intel MKL 2016-2017 and AMD OpenCL 1.1 imple-
mentation) on Windows 10 and Linux operating systems, compiled with Intel’s C++ compiler in
Intel Parallel Studio XE. Code using this library was run and tested successfully on machine config-
urations containing Intel Core i5 CPU with nVidia GTX 760 GPU; Intel Core i7 CPU with AMD
Radeon R9 200 Series GPU; and (National Supercomputing Institute, Cherry-Creek cluster) Intel
Xeon E5-2697v2 CPU with Intel Xeon Phi 7120P co-processors.

File kffann.h is the main entry point of the library. Including this file will enable the whole
library to the client. Check this file for specifics, such as what macros to define in order to enable
certain features like the trainer.

The library supports multilayer perceptrons and convolutional neural networks with an imple-
mentation of back propagation with stochastic gradient descent for training featuring dynamic learn-
ing rate, momentum, regularization and a variety of activation and cost functions. It makes use of
computational optimization technologies such as OpenMP (version 2.0 for compatibility with Mi-
crosoft C++ compilers) for multithreaded operations, Intel MKL for algebra operations and OpenCL
for co-processor offloading.

As a disclaimer, the following code, as of this writing, is offered as is for reference purposes, even
though it is fully functional. It is constantly tested, maintained, optimized and debugged. The use
of this code is at the user’s own willingness and the creator of this code shall not be held responsible

for any liability resulting from any form of use of this code.
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B.1 File: kconvfeature.h

#ifndef K.CONVOLUTIONA FEATURE_H
#define K.CONVOLUTIONA FEATURE_H

#include <cstddef>
#include 7 kconvfilter . h”
#include " ksafevector . h”
#include "knnkeys.h”

#include "ktypeutils. h”

namespace NeuralNetwork

{

namespace Convolutional

{

class Feature32

{

public:
static const std::size_t OUTPUTDEPTH = 1;

/// <summary>

/// Depth of the output generated by this feature’s convolution.
/// </summary>

std::size_t getOutputDepth() const

{
return OUTPUT_DEPTH;

}

/// <summary>

/// Width of the output generated by this feature’s convolution.
/// </summary>

std::size_t getOutputWidth() const

{

return m_uiOutputWidth;

}

/// <summary>

/// Height of the output generated by this feature’s convolution.
/// </summary>

std::size_t getOutputHeight () const

{

return m_uiOutputHeight ;

}

/// <summary>
/// Step at which the filter will be translated over the input
— during convolution.
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/// </summary>
std::size_t getStep() const

{
return m_uiStep;
}
const Filter32 xgetFilter () const
{
return &m _filter;
}
Filter32 xgetFilter ()
{
return &m _filter;
}
std::size_t getLayerIndex() const
{
return m_uilLayerIndex;
}
std::size_t getStartWeight () const
{
return m_filter.getStartWeight () ;
}

Feature32(std::size_t step, const Filter32 &src,
KUtilities :: atomic_vector<float > &biases , std::size_t
— uiBiasIndex ,
KUtilities :: atomic_vector<float> &weights, std::size_t
— uiStartWeight ,
std :: size_t uilnputWidth , std::size_t uilnputHeight 6 std::
— size_t uiLayerIndex,
const FeatureKey &key)
m_filter (src, biases, uiBiasIndex, weights, uiStartWeight),
m_uiStep (step),
m_uiLayerIndex (uiLayerIndex)

{
m_uiOutputWidth = (uilnputWidth — (m_filter.getWidth() & (71)) +
— step
— (m_filter .getWidth() & 1))
/ step;
m_uiOutputHeight = (uilnputHeight — (m_filter.getHeight() & (71)
< ) + step
— (m_filter.getHeight () & 1))
/ step;
}
private:
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/// <summary>
/// Implements the Filter32 class. Used for the internal
— representation ,
/// sharing parameters, of the feature filter.
/// </summary>
class ReferenceFilter32 : public Filter32
{
public:
ReferenceFilter32 (const Filter32 &src,
KUtilities :: atomic_vector<float> &biases , std::size_t
— uiBiasIndex ,
KUtilities :: atomic_vector<float > &weights, std::size_t
— uiStartWeight)
Filter32 (src),
m_biases (biases),
m_uiBiasIndex (uiBiasIndex),
m_weights (weights) ,
m_uiStartWeight (uiStartWeight) ,
m_uiNumWeights(src. getFilterElementsCount ())

setBias (src.getBias());
setFilterElements (src.getFilterElements ());

}

float getBias() const override

{
}

void setBias(float value) override

{
}

std::size_t getFilterElementsCount () const override

{
}

const float xgetFilterElements () const override

{

return m_biases [m_uiBiasIndex];

m_biases.store (m_uiBiasIndex, value);

return m_uiNumWeights;

return m-_weights.data() + m_uiStartWeight;

}

void setFilterElements(const float xarr) override

{

#pragma omp parallel for
for (int 1 = 0; i < (int)getFilterElementsCount(); i++)
setFilterElement (i, arr[i]);

118

www.manharaa.com



void setFilterElement (std::size_t index, float value) override

{
}

std::size_t getStartWeight () const

{
}

private:
KUtilities :: atomic_vector<float > &m_biases;
std::size_t m_uiBiasIndex;
KUtilities :: atomic_vector<float > &m_weights;
std::size_t m_uiStartWeight;
std::size_t m_uiNumWeights;

}s

m_weights.store (m_uiStartWeight + index, value);

return m_uiStartWeight ;

ReferenceFilter32 m_filter;
std::size_t m_uiOutputWidth;
std::size_t m_uiOutputHeight;
std::size_t m_uiStep;

std::size_t m_uiLayerIndex;

}s

typedef Feature32 Feature;

}
¥

#endif

B.2 File: kconvfilter.h

#ifndef K.CONVOLUTIONA FILTER_H
#define K.CONVOLUTIONA FILTER__H

#include <cstddef>
#include <cstring>
#include <vector>
#include <stdexcept>
#include <utility >
#include <istream>
#include <ostream>
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#include <memory>
#include "knnkeys. h”
#include 7 ktypeutils.h”

namespace NeuralNetwork

{

namespace Convolutional
{
/// <summary>
/// Base class that represents a convolutional filter.
/// </summary>
class Filter32

{

public:
typedef std::size_t depth_index_type;

/// <summary>

/// Width of the filter.

/// </summary>

std::size_t getWidth() const

{

return m_uiWidth;

}

/// <summary>

/// Height of the filter.
/// </summary>

std::size_t getHeight () const

{

return m_uiHeight;

}

/// <summary>

/// Retrieves the bias of the filter.
/// </summary>

virtual float getBias() const = 0;

/// <summary>

/// Sets the bias of the filter.

/// </summary>

virtual void setBias(float value) = 0;

Filter32 ()
{}

/// <summary>
/// Number of elements in the array returned by getDepthIndices().
/// </summary>
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std::size_t getDepthCount () const

{

return m_arrDepthIndices. size () ;

}

/// <summary>

/// Collection of indexes for each depth (channel) on which this
— filter operates.

/// </summary>

const depth_index_type *xgetDepthIndices() const

{

return m_arrDepthIndices. data () ;

}

/// <summary>

/// Number of filter elements.

/// </summary>

virtual std::size_t getFilterElementsCount () const = 0;
/// <summary>

/// Filter32 elements organized in a one—dimensional array.
/// </summary>

virtual const float *xgetFilterElements () const = 0;

/// <summary>

/// Sets the values for all filter elements organized in
/// a one—dimensional array.

/// </summary>

virtual void setFilterElements (const float xarr) = 0;

/// <summary>
/// Sets the value of filter element at specified index in filter.
/// </summary>
virtual void setFilterElement (std::size_t index, float value) = 0;

/// <summary>

/// Sets the value of filter element at position (x, y, z) in
— filter.

/// </summary>

void setFilterElement (std::size_t x, std::size_t y, std::size_t z,
— float value)

{

setFilterElement (getFilterElementIndex(x, y, z), value);

}

/// <summary>

/// Gets the value of filter element at position (x, y, z) in
— filter.

/// </summary>

float getFilterElement (std::size_t x, std::size_t y, std::size_t z
— ) const

{

getFilterElements () [getFilterElementIndex(x, y, 2z)];
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}

/// <summary>

/// Gets the index of filter element at position (x, y, z) in

/// one—dimensional array returned by getFilterElements().

/// </summary>

std::size_t getFilterElementIndex (std::size_t x, std::size_t y,
— std::size_t z) const

{

return (z x getHeight() + y) * getWidth() + x;

}

Filter32 (std::size_t width, std::size_t height,
const Filter32::depth_index_type xarrDepthlndices, std::size_t
< uiDepthCount)

if (larrDepthIndices)
throw std::invalid_argument ("arrDepthIndices_cannot_be_null.”)
<_> )
if (uiDepthCount = 0)
throw std::invalid_argument (" arrDepthlndices_cannot_be_empty.”
)
if (width = 0)
throw std::invalid_argument (" width_must_be_positive.”);
if (height = 0)
throw std::invalid_argument (” height _must_be_positive.”);

m_uiWidth = width;
m_uiHeight = height;

m_arrDepthIndices. assign (arrDepthIndices, arrDepthIndices +
— uiDepthCount) ;
}

/// <summary>
/// Copy constructor.
/// </summary>
Filter32 (const Filter32 &src)
Filter32 (src.getWidth (), src.getHeight (),
src.getDepthIndices (), src.getDepthCount())
{3

Filter32 (Filter32 &&src)

{
m_uiWidth = src.getWidth () ;

m_uiHeight = src.getHeight () ;
m_arrDepthIndices = std::move(src.m_arrDepthIndices);

}

Filter32& operator=(const Filter32 &src)
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if (this != &src)

m_uiWidth = src.getWidth () ;
m_uiHeight = src.getHeight () ;
m_arrDepthIndices = src.m_arrDepthIndices;

}

return xthis;

}

Filter32& operator=(Filter32 &&src)

{
if (this != &src)

m_uiWidth = src.getWidth () ;
m_uiHeight = src.getHeight () ;
m_arrDepthIndices = std::move(src.m_arrDepthIndices);

}

return xthis;

}

void Save(std::ostream &fNum, const LayerKey &key) const;

private:
std:: size_t m_uiWidth;
std:: size_t m_uiHeight;
std :: vector<depth_index_type> m_arrDepthIndices;

}s

/// <summary>

/// Implements the Filter32 class as an input filter for a
— convolutional layer.

/// </summary>

class InputFilter32 : public Filter32

{

public:

float getBias() const override

{

return m_fBias;

}

void setBias(float value) override

{

m_fBias = value;

}

std::size_t getFilterElementsCount () const override

{

return m_arrFilter.size () ;
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const float xgetFilterElements () const override

{

return m_arrFilter.data();

}

float xgetFilterElements ()

{

return m_arrFilter.data();

}

void setFilterElements(const float xarr) override
{
memcpy ( m_arrFilter.data(), arr, m_arrFilter.size () * sizeof(
— float));
}

void setFilterElement (std::size_t index, float value) override

{

m_arrFilter [index] = value;

}

InputFilter32 (const std::vector<std::vector<std::vector<float>>> &
— arrFilter ,
const std::vector<Filter32::depth_index_type> &
— arrDepthIndices)
InputFilter32 (arrFilter.at(0).at(0).size(), arrFilter.at(0).size
— (), arrDepthIndices.data(), arrFilter.size())

std::size_t depth = arrFilter.size();
std::size_t height = arrFilter [0]. size();
std::size_t width = arrFilter [0][0]. size ();

if (depth != arrDepthIndices.size())
throw std::invalid_argument (” Filter32 's_array_depth_and_number
— _of._depth_indices._do_not._match”);

for (std::size_t z = 0; z < depth; z++)

if (height != arrFilter[z].size())
throw std::invalid_argument (” Jagged _array_arrFilter _not.
— supported.”);
for (std::size_t y = 0; y < height; y++)

if (width != arrFilter[z][y].size())
throw std::invalid_argument (”Jagged_array_arrFilter _not.
— supported.”);
for (std::size_-t x = 0; x < width; x++)
Filter32::setFilterElement (x, y, z, arrFilter[z][y][x]);
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}
}

InputFilter32 (const float sxxarrFilter , std::size_t width, std::
— size_t height
const Filter32::depth_index_type xarrDepthIndices, std::size_t
— uiDepthCount)
InputFilter32 (width, height, arrDepthIndices, uiDepthCount)
{
for (std::size_-t z = 0; z < uiDepthCount; z++)
for (std::size_t y = 0; y < height; y++)
for (std::size_.t x = 0; x < width; x++)
Filter32::setFilterElement (x, y, z, arrFilter[z]|[y][x]);

}

InputFilter32(const float xarrFilter, std::size_t width, std::
— size_t height ,
const Filter32::depth_index_type xarrDepthlndices, std::size_t
< uiDepthCount)
InputFilter32 (width, height, arrDepthIndices, uiDepthCount)

{

m_arrFilter.assign (arrFilter , arrFilter + m_arrFilter.size());

}

InputFilter32(std::size_t width, std::size_t height,
const Filter32::depth_index_type xarrDepthlndices, std::size_t
< uiDepthCount)
Filter32 (width, height, arrDepthIndices, uiDepthCount)
{
m_arrFilter.resize (width % height % uiDepthCount);
setBias (0.0) ;

}

InputFilter32 (const InputFilter32 &src)
Filter32 (src)

{
m_fBias = src.m_fBias;
m_arrFilter = src.m_arrFilter;

}

InputFilter32 (InputFilter32 &&src)
Filter32 (src)
{
m_fBias = src.m_fBias;
m_arrFilter = std::move(src.m_arrFilter);

}

InputFilter32& operator=(const InputFilter32 &src)

{
if (this != &src)
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x(Filter32x*)this = src;
m_fBias = src.m_fBias;
m_arrFilter = src.m_arrFilter;

}

return xthis;

}

InputFilter32& operator=(InputFilter32 &&src)

{
if (this != &src)

x(Filter32x*)this = std::move(src);
m_fBias = src.m_fBias;
m_arrFilter = std::move(src.m_arrFilter);

}

return xthis;

}

static std::shared_ptr<InputFilter32> Load(std::istream &fNum);

private:
float m_fBias;
std :: vector<float> m_arrFilter;

}s

typedef Filter32 Filter;
typedef InputFilter32 InputFilter;

}
}

#endif

B.3 File: kconvfilter.cpp

#include <ostream>

#include " kconvfilter h”

void NeuralNetwork:: Convolutional :: Filter32 ::Save(std:: ostream & fNum,

{

— const LayerKey & key) const

std::uint64_t u_output = KUtilities:: UInt64:: getLittleEndian (this—>
— getWidth());
fNum. write (( char)&u_output, sizeof (u_output));
if (! fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional :: Filter32 ::
— Save(ostream &fNum, _const _LayerKey &key) |: .7
"Error_writing.filter cwidth.”);
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u_output = KUtilities :: UInt64:: getLittleEndian (this—>getHeight ());
fNum. write (( char*)&u_output, sizeof(u_output));
if (!MfNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional :: Filter32 ::
— Save(ostream &fNum, -const._LayerKey &key) |: .”
"Error_writing._filter _height.”);

u_output = KUtilities :: UInt64:: getLittleEndian (this—>getDepthCount () );
fNum. write (( char)&u_output, sizeof(u_output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional :: Filter32 ::
— Save(ostream &fNum, _const _LayerKey &key) |: .7
"Error_writing.filter .depth_count.”);
for (std::size_t depth_i = 0; depth.-i < this—>getDepthCount(); depth_i
= ++)
{

u_output = KUtilities :: UInt64:: getLittleEndian (this—>getDepthIndices
— () [depth_i]);
fNum. write ((charx)&u_output, sizeof (u_output));
if (!'fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional :: Filter32
— ::Save(ostream . &fNum, _const _LayerKey &key) ]:.”
"Error_writing _depth_index.”);

}

float bias = this—>getBias();
fNum. write ((const charx*)&bias, sizeof(float));
if (!fNum.good())
throw std::runtime_error (7 |[NeuralNetwork :: Convolutional :: Filter32 ::
— Save(ostream .&fNum, _const _LayerKey &key) ]:.”
"Error_writing_filter _bias.”);

fNum. write ((const charx)this—>getFilterElements (), sizeof(float) =x
— this—>getFilterElementsCount () );
if (!MfNum.good())
throw std::runtime_error (” [NeuralNetwork :: Convolutional :: Filter32 ::
— Save(ostream &fNum, _const._LayerKey &key) |: .7

"Error_writing.filter _elements.”);

}

std :: shared_ptr<NeuralNetwork :: Convolutional :: InputFilter32>
< NeuralNetwork :: Convolutional :: InputFilter32 :: Load(std ::istream &
< fNum)

char buffer [8];
std :: vector<float> arrFilter;

std :: vector<std :: size_t > arrDepthlIndices;
std::size_t uiFilterWidth , uiFilterHeight , uiDepthCount;

fNum.read (buffer , sizeof(std::uint64_t));
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if (!fNum.good () || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— InputFilter32::Load(istream &fNum) |:.”
"Error.reading._filter cwidth.”);
uiFilterWidth = KUtilities :: UInt64 :: ToEndian ( buffer , true);

fNum.read (buffer , sizeof(std::uint64_t));
it ('fNum.good() || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— InputFilter32 ::Load(istream &fNum) |:.”
"Error.reading.filter _height.”);
uiFilterHeight = KUtilities :: UInt64 :: ToEndian (buffer , true);

fNum.read (buffer , sizeof(std::uint64_t));
if (!MNum.good() || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (" [NeuralNetwork :: Convolutional ::
— InputFilter32::Load(istream -&fNum) |: .7
"Error.reading.filter .depth_count.”);
uiDepthCount = KUtilities :: UInt64 :: ToEndian ( buffer , true);

arrDepthIndices. resize (uiDepthCount) ;
for (std::size_t depth_i = 0; depth_.i < uiDepthCount; depth_i++)
{
fNum.read (buffer , sizeof(std::uint64_t));
if (!MNum.good () || fNum.gcount () != sizeof(std::uint64_t))
throw std::runtime_error (7 |[NeuralNetwork :: Convolutional ::
— InputFilter32::Load(istream &Num)]:.”
"Error_reading._filter .depth_count.”);
arrDepthIndices [depth_i] = KUtilities :: UInt64 :: ToEndian (buffer , true

= )i
}
float bias;
fNum. read ((char)&bias, sizeof(float));
if ('fNum.good() || fNum.gcount() != sizeof(float))

throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— InputFilter32::Load(istream &fNum)]:._”
"Error_reading._filter _bias.”);

arrFilter.resize (uiFilterWidth x uiFilterHeight * uiDepthCount);
fNum.read ((charx)arrFilter.data(), sizeof(float) % arrFilter.size());
if (!fNum.good() || fNum.gcount() != sizeof(float) * arrFilter.size())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— InputFilter32::Load(istream &fNum) |:.”

"Error._reading.filter _elements.”);

std ::shared_ptr<InputFilter32>retval = std::shared_ptr<InputFilter32 >(
— new InputFilter32(
arrFilter .data(),
uiFilterWidth , uiFilterHeight ,
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arrDepthIndices.data(), uiDepthCount));
retval —>setBias(bias);

return retval;

}

B.4 File: kconvlayer.h

#ifndef KFFANN.CONVOLUTIONALLAYER_ H
#define KFFANN_.CONVOLUTIONAL LAYER_H

#include <vector>
#include <stdexcept>
#include <memory>

#include "knnkeys.h”

#include 7 klayer.h”
#include " kconvfilter h”
#include 7 kconvfeature.h”

#include "ktypeutils. h”

namespace NeuralNetwork

{

class Network32;

namespace Convolutional

{

class ConvolutionalLayer32 : public TrainableLayer32

{

public:
static const int LAYERTYPE = 405;

/// <summary>

/// Width of the output (equivalent to number of columns).
/// </summary>

std::size_t getOutputWidth() const

{

return m_uiOutputWidth ;

}

/// <summary>

/// Height of the output (equivalent to number of rows).
/// </summary>

std::size_t getOutputHeight () const
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{

return m_uiOutputHeight;

}

/// <summary>

/// Depth of the output (equivalent to number of channels or
— features).

/// </summary>

std::size_t getOutputDepth() const

{

return m_features.size () ;

}

/// <summary>

/// Width of the input (equivalent to number of columns).
/// </summary>

std::size_t getInputWidth () const

{

return m_uilnputWidth ;

}

/// <summary>

/// Height of the input (equivalent to number of rows).
/// </summary>

std::size_t getInputHeight () const

{

return m_uilnputHeight ;

}

/// <summary>

/// Depth of the input (equivalent to number of channels).
/// </summary>

std::size_t getInputDepth() const

{

return m_uilnputDepth;

}

std::size_t getFeaturesCount () const

{

return m_features.size () ;

}

Feature32 &getFeature(std::size_t index) const

{

return sxm_features.at (index);

}

/// <summary>
/// Initializes a new convolutional layer.
/// </summary>
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ConvolutionalLayer32 (const Network32 &network ,
const std::shared_ptr<Filter32> xarrFilters, const std::size_t =
— arrFeatureSteps, std::size_t uiNumFeatures,
const NeuralNetwork:: ActivationFunctions :: TActivationFunction<
— float > &f,
std :: size_t uilnputWidth, std::size_t uilnputHeight 6 std::
— size_t uilnputDepth
const Layer32 &prevLayer, std::size_t uiMinibatchSize , const
— LayerKey &key)
ConvolutionalLayer32 (network, f, prevLayer, uiMinibatchSize, key
=)
{
init (arrFilters , arrFeatureSteps, uiNumFeatures, uilnputWidth,
< uilnputHeight , uilnputDepth);

}

/// <summary>
/// Initializes a new convolutional layer using another
— convolutional layer as input layer.
/// </summary>
ConvolutionalLayer32 (const Network32 &network,
const std::shared_ptr<Filter32> xarrFilters, const std::size_t
— xarrFeatureSteps, std::size_t uiNumFeatures,
const NeuralNetwork:: ActivationFunctions:: TActivationFunction<
— float> &f,
const ConvolutionalLayer32 &prevLayer, std::size_t
< uiMinibatchSize , const LayerKey &key)
ConvolutionalLayer32 (network, arrFilters, arrFeatureSteps,
— uiNumPFeatures, f,
prevLayer.getOutputWidth (), prevLayer.getOutputHeight (),
< prevLayer.getOutputDepth (),
prevLayer , uiMinibatchSize , key) { }

ConvolutionalLayer32 (const ConvolutionalLayer32&) = delete;
ConvolutionalLayer32& operator=(const ConvolutionalLayer32&) =
— delete;

virtual “ConvolutionalLayer32 ()

{1}

int getLayerType() const override

{
return LAYER.TYPE;

}

/// <summary>

/// Returns the index of the preceeding layer inside
/// its network.

/// </summary>

std::size_t getPreviousLayerIndex () const override
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return m_prevLayer. getNetworkIndex () ;

}

void Propagate() override;
void Backpropagate (Layer32 &fromLayer) override;

void PostBackpropagate(float fInvMinibatchSize, float
— fInvTotalSamples) override;

void Save(std::ostream &Num, const LayerKey &key) const;
static std::shared_ptr<ConvolutionalLayer32> Load(std::istream &
< fNum, const Network32 &network,
const NeuralNetwork:: ActivationFunctions::IActivationFunction<
— float> &f,
const Layer32 &prevLayer, std::size_t uiMinibatchSize , const
— LayerKey &key);

protected:
/// <summary>
/// Derived class initialization constructor.
/// </summary>
ConvolutionalLayer32 (const Network32 &network ,
const NeuralNetwork:: ActivationFunctions ::TActivationFunction<
— float > &f,
const Layer32 &prevLayer, std::size_t uiMinibatchSize , const
— LayerKey &key)
TrainableLayer32 (network, 1, f, uiMinibatchSize, key),
m_prevLayer (prevLayer)

{3

void init (const std::shared_ptr<Filter32> xarrFilters, const std::
— size_t xarrFeatureSteps, std::size_t uiNumFeatures,
std :: size_t uilnputWidth, std::size_t uilnputHeight, std::size_t
< uilnputDepth);

const Layer32 &m_prevLayer;
std :: vector<float> m_buffer;

private:
std::size_t createConvolutionStructure(std::size_t uiFeaturelndex,
std ::size_t uiConnectionsMade

);

std :: vector<std :: shared_ptr <Feature32>> m_features;
std ::vector<int32_t> m_arrConnectionsIn;

std:: size_t m_uiOutputWidth;
std:: size_t m_uiOutputHeight;
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std::size_t m_uiNumNeuronsPerFeature;

std::size_t m_uilnputWidth;
std :: size_t m_uilnputHeight;
std::size_t m_uilnputDepth;

std :: vector<float > m_bufferSparseWeights;
std ::vector<int32_t> m_bufferSparseRowsPtr;
std :: vector<float> m_bufferPrevActivationT;
std :: vector<float> m_bufferConvolutionT;

}

typedef ConvolutionallLayer32 ConvolutionalLayer;

¥
}

#endif

B.5 File: kconvlayer.cpp

#include <iostream>
#include 7 kinputlayer.h”
#include "kconvlayer. h”
#include "kconvneuron.h”

#include 7“mkl.h”

#include "kopencl.h”

void NeuralNetwork:: Convolutional :: ConvolutionalLayer32:: Propagate ()

{

std :: memset (m_bufferConvolutionT .data (), 0, m_bufferConvolutionT .size
— () * sizeof(float));

mkl_somatcopy ( 'R", "T7,
m_uiMinibatchSize , m_prevLayer.getNeuronCount (),
1.0,
m_prevLayer.getActivations (),
m_prevLayer.getNeuronCount () ,
m_bufferPrevActivationT .data (),
m_uiMinibatchSize) ;
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const float constant_1 = 1.0;

const char *xNoTrans = "N”;

int32_.t m = (int32_t)(m_-uiNumNeuronsPerFeature * m_features.size ());

int32_t n (int32_t )m_uiMinibatchSize;

int32_t k = (int32_t)m_prevLayer. getNeuronCount()
{

char matdescra[6] = ‘G,
0, 0,
’C?,
0, 0 };

const float xb = m_bufferPrevActivationT .data();
int32_t 1db = n;
int32_t ldc = n;

std :: vector<float > &val = m_bufferSparseWeights;
const int32_t sxrowptr = m_bufferSparseRowsPtr.data();
const int32_t xcolind = m_arrConnectionsIn.data();
int32_t nnz = (int32_t)val.size();

float xc = m_bufferConvolutionT .data () ;

#pragma omp parallel for
for (int feature_.i = 0; feature_i < m_features.size(); feature_i++)
{
Filter32 &filter = xm_features|[feature_i]—->getFilter ();
std::size_t uiFeatureWeightSize = m_uiNumNeuronsPerFeature x filter .
— getFilterElementsCount () ;
std ::memcpy (val.data() + uiFeatureWeightSize % feature_i, filter.
— getFilterElements (), filter.getFilterElementsCount () % sizeof(
— float));
KUtilities :: replicate_array (val.data() 4+ uiFeatureWeightSize x
— feature_.i, filter.getFilterElementsCount (),
— uiFeatureWeightSize);

}

if (NeuralNetwork ::bUseGPU)
KNNUtils : : KBLASOpenCL: : scsrmm (¢, n,

false ,
val.data (), (uint32_t*)colind, (uint32_t=)rowptr,
m, k, b);

else

mkl_scsrmm (NoTrans, &m, &n, &k,
&constant_1 |
matdescra, val.data(), colind, rowptr, rowptr + 1,
b, &ldb, &constant_1
c, &lde);

#pragma omp parallel for
for (int feature_i = 0; feature_i < m_features.size(); feature_i++)
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{
m_weighted_input [ feature_i * m_uiNumNeuronsPerFeature] = m_biases |
— feature_i];
KUtilities :: replicate_array (m_weighted_input.data() + feature_i x
< m_uiNumNeuronsPerFeature, 1, m_uiNumNeuronsPerFeature) ;
}

KUtilities :: replicate_array (m_weighted_input.data(), this—
— getNeuronCount (), m_weighted_input.size());

mkl_somatadd ( 'R’, "T7, "N’
m_uiMinibatchSize , this—>getNeuronCount (),
1.0,
m_bufferConvolutionT .data (),
m_uiMinibatchSize ,

1.0,

m_weighted_input . data (

this —>getNeuronCount ()
(
)

)

)
).
)

m_weighted_input . data
this —>getNeuronCount (

Y

m_pfuncActivation—>f(m_activations.data(), m_weighted_input.data(),
— m_weighted_input.size ());
}

void NeuralNetwork:: Convolutional :: ConvolutionalLayer32 :: Backpropagate (
— Layer32 & fromLayer)

if (fromLayer.getLayerType() != NeuralNetwork::InputLayer32::

{

< LAYERTYPE)

std :: vector<float > &delta_from_prime = m_bufferPrevActivationT;
std :: vector<float > &delta_to_Trans = m_bufferConvolutionT;

std :: memset (delta_from_prime.data(), 0, delta_from_prime.size () x
— sizeof (float));
mkl_somatcopy ('R’, T,
m_uiMinibatchSize , this—>getNeuronCount (),
1.0,
this—getDeltas (),
this —>getNeuronCount () ,
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delta_to_Trans.data(),
m_uiMinibatchSize) ;

const float constant_-1 = 1.0;
const char «Trans = 717
int32_.t m = (int32_t)(m_uiNumNeuronsPerFeature x m_features.size ());
int32_t n = (int32_t)m_uiMinibatchSize;
int32_t k = (int32_t)fromLayer.getNeuronCount () ;
char matdescra[6] = { 'G’,

0, 0,

7C7
0, 0
const float *b =
int32_t 1ldb = n;
int32_t ldc n;

}s
delta_to_Trans.data();

std :: vector<float > &val = m_bufferSparseWeights;
const int32_t xrowptr = m_bufferSparseRowsPtr.data();
const int32_t xcolind = m_arrConnectionsIn.data();
int32_t nnz = (int32_t)val.size();

float xc = delta_from_prime.data();

#pragma omp parallel for
for (int feature_.i = 0; feature.i < m_features.size(); feature_i++)
{
Filter32 &filter = xm_features|[feature_i]->getFilter ();
std:: size_t uiFeatureWeightSize = m_uiNumNeuronsPerFeature =
— filter .getFilterElementsCount () ;
std ::memcpy(val.data() + uiFeatureWeightSize x feature_i, filter.
— getFilterElements (), filter.getFilterElementsCount () x*
— sizeof (float));
KUtilities :: replicate_array (val.data() + uiFeatureWeightSize x
— feature_i, filter.getFilterElementsCount(),
— uiFeatureWeightSize) ;

}

if (NeuralNetwork ::bUseGPU)
KNNUtils : : KBLASOpenCL: : scsrmm (¢, n,

true ,
val.data (), (uint32_tx)colind, (uint32_t=x)rowptr,
m, k, b);

else

mkl_scsrmm ( Trans , &m, &n, &k,
&constant_1 |
matdescra, val.data(), colind, rowptr, rowptr + 1,
b, &ldb, &constant_1
c, &ldc);

mkl_somatcopy ('R, T,
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fromLayer . getNeuronCount (), m_uiMinibatchSize ,
1.0,

delta_from_prime.data (),

m_uiMinibatchSize ,

fromLayer. getDeltaVector (). unsafe_data (),
fromLayer. getNeuronCount () ) ;

m_buffer.resize (fromLayer.getWeightedInputVector () .size());
fromLayer. getActivationFunction () .df(m_buffer.data(), fromLayer.
— getWeightedInputValues (), fromLayer.getWeightedInputVector () .
— size());
vsMul ((int ) m_buffer.size (), fromLayer.getDeltaVector().data(),
— m_buffer.data (), fromLayer.getDeltaVector().unsafe_data());

for (std::size_t sample_.i = 0; sample.i < m_uiMinibatchSize; sample_i
— ++)
{
const float % from_activations = fromLayer.getActivations(sample_i);
#pragma omp parallel for
for (int neuron_to-i = 0; neuron_-to_i < (int)this—>getNeuronCount();

<~ neuron_to_i++)
{
NeuralNetwork :: Convolutional :: ConvolutionalNeuron32 &neuron_to =
(NeuralNetwork :: Convolutional :: ConvolutionalNeuron32&)this —
— getNeuron (neuron_to_i);

float neuron_-to_delta = neuron_to.getDelta(sample_i);
const int32_t xneuron_from_indices = neuron_to.getNeuronFrom () ;
for (std::size_t connection_index = 0; connection_index <

— mneuron_to.getConnectionsInCount (); connection_index++)
neuron_to.getDeltaWeights () [connection_index ] +=
(neuron_to_delta * from_activations[neuron_from_indices |

< connection_index]]) ;

neuron_to.DeltaBias += neuron_to_delta;

}
}

}

void NeuralNetwork:: Convolutional :: ConvolutionalLayer32 ::

{

— PostBackpropagate (float fInvMinibatchSize, float fInvTotalSamples)

#pragma omp parallel for
for (int j = 0; j < (int)this—>getNeuronCount(); j++)
{

Neuron32 &neuron = this—>getNeuron(j);

neuron . UpdateWeights (fInvMinibatchSize , fInvTotalSamples);
neuron . UpdateBias (fInvMinibatchSize);
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neuron . ScaleDeltaWeights () ;
neuron . ScaleDeltaBias () ;

}

}

void NeuralNetwork:: Convolutional :: ConvolutionalLayer32::Save(std ::

{

< ostream & fNum, const LayerKey & key) const
std :: uint64_t u_-output;

u_output = KUtilities :: UInt64:: getLittleEndian (this—>getInputWidth());
fNum. write (( char*)&u_output, sizeof (u_output));
if (! fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— ConvolutionalLayer32:: Save(std ::ostream _&_fNum, _const.LayerKey
— Lokey)]: L
"Error_owriting cinput.width.”);

u_output = KUtilities :: UInt64:: getLittleEndian (this—>getInputHeight ())
— 3
fNum. write ((char*)&u_output, sizeof(u_output));
if (!MfNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— ConvolutionalLayer32::Save(std::ostream _&_fNum, _const.LayerKey
— L. key)]: "
"Error_writing._input._height.”);

u_output = KUtilities :: UInt64:: getLittleEndian (this—>getInputDepth());
fNum. write (( char *)&u_output, sizeof(u_output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— ConvolutionalLayer32:: Save(std::ostream _&_fNum, _const . LayerKey
— &okey) ] l?
"Error.writing .input.depth.”);

u_output = KUtilities :: UInt64:: getLittleEndian (this—>getFeaturesCount
= ()3
fNum. write (( charx)&u_output, sizeof(u_output));
if (!fNum.good())
throw std::runtime_error (" [NeuralNetwork :: Convolutional ::
— ConvolutionalLayer32:: Save(ostream &fNum, .const _LayerKey _&key)
— |
"Error.owriting _.feature._count.”);

for (std::size_t feature_.i = 0; feature_i < this—>getFeaturesCount () ;
— feature_i++)
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NeuralNetwork :: Convolutional :: Feature32 &feature = this—>getFeature(
— feature_i);

u_output = KUtilities :: UInt64:: getLittleEndian (feature.getStep());
fNum. write (( charx)&u_output , sizeof (u-output));
if (!MfNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— ConvolutionalLayer32:: Save(ostream &fNum, .const _LayerKey . &
— key)]:.”
"Error.writing .next.feature_step.”);

feature.getFilter ()—>Save (fNum, key):;

}
¥

std :: shared_ptr<NeuralNetwork :: Convolutional :: ConvolutionalLayer32>
< NeuralNetwork :: Convolutional :: ConvolutionalLayer32 :: Load(std ::
— istream & fNum,
const Network32 & network, const NeuralNetwork:: ActivationFunctions ::
< TActivationFunction<float> &
const Layer32 & prevLayer, std::size_t uiMinibatchSize, const LayerKey
— & key)

std :: size_t uiNumFeatures,
uilnputWidth, uilnputHeight , uilnputDepth;
char buffer [8];

fNum.read (buffer , sizeof(std::uint64_t));
if (!fNum.good() || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— MaxPoolLayer :: Load (istream -&fNum, .const .Network32 &network , _
— size_t._.uiMinibatchSize , .const_NeuralNetwork ::
— ActivationFunctions :: [ActivationFunction _&f , .const._Layer32._&
— prevLayer,_const._LayerKey &key) ]:.”
"Error._reading._input._width.”);
uilnputWidth = KUtilities :: UInt64 :: ToEndian ( buffer , true);

fNum.read (buffer , sizeof(std::uint64_t));
if (!MNum.good () || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— MaxPoolLayer :: Load (istream &fNum, .const _Network32 _&network ,
— size_t.uiMinibatchSize ,.const_NeuralNetwork ::
— ActivationFunctions :: [ActivationFunction &f, _const._Layer32._&
— prevLayer ,_const_LayerKey &key) ]:.”
"Error.reading._input_height.”);

uilnputHeight = KUtilities :: Ulnt64 :: ToEndian ( buffer , true);

fNum.read (buffer , sizeof(std::uint64_t));
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if (!fNum.good () || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— MaxPoolLayer :: Load (istream &fNum, .const .Network32 _&network , .
— size_t_.uiMinibatchSize , _.const_NeuralNetwork ::
— ActivationFunctions :: IActivationFunction &f, _const._Layer32_&
— prevLayer,_const._LayerKey &key)]:.”
"Error_reading._input._depth.”);
uilnputDepth = KUtilities :: UInt64 :: ToEndian ( buffer , true);

fNum.read (buffer , sizeof(std::uint64_t));
if (!fNum.good() || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— MaxPoolLayer :: Load (istream -&fNum, .const .Network32 . _&network , _
— size_t._.uiMinibatchSize , .const_NeuralNetwork ::
— ActivationFunctions :: IActivationFunction _&f, _const._Layer32_&
— prevLayer,_const._LayerKey &key) ]:.”
"Error_reading .number_of_features.”);

)

uiNumFeatures = KUtilities :: UInt64 :: ToEndian ( buffer , true);

std::vector<std::size_t> arrFeatureSteps (uiNumFeatures);
std :: vector<std :: shared_ptr<NeuralNetwork :: Convolutional :: Filter32 >>
— arrFilters (uiNumFeatures) ;

for (std::size_t filter_i = 0; filter_i < uiNumFeatures; filter_i++)

{
fNum.read (buffer , sizeof(std::uint64_t));
if (!'fNum.good() || fNum.gcount () != sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork:: Convolutional ::
— MaxPoolLayer :: Load (istream _&Num, .const -Network32 _&network , .
— size_t._.uiMinibatchSize ,_.const_NeuralNetwork ::
— ActivationFunctions:: [ActivationFunction .&f, .const._Layer32_&
— prevLayer ,_const_LayerKey._&key) ]:.”
"Error.reading._feature._step.”);

arrFeatureSteps [filter_i] = KUtilities :: Ulnt64 :: ToEndian ( buffer ,
— true);

arrFilters [filter_i] = InputFilter32 ::Load ({Num);

return std::shared_ptr<ConvolutionalLayer32 >(
new Convolutional:: ConvolutionalLayer32 (

network , arrFilters.data(), arrFeatureSteps.data(),
— uiNumPFeatures, f,

uilnputWidth , uilnputHeight , uilnputDepth
prevLayer , uiMinibatchSize , key));

}

void NeuralNetwork:: Convolutional :: ConvolutionalLayer32::init (const std
— ::shared_ptr<Filter32> xarrFilters, const std::size_t x

— arrFeatureSteps, std::size_t uiNumFeatures, std::size_t

— uilnputWidth, std::size_t uilnputHeight, std::size_t uilnputDepth)
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if (larrFilters)

throw std::invalid_argument (" arrFilters_cannot_be_null.”);
if (larrFeatureSteps)

throw std::invalid_argument (" arrFeatureSteps_cannot_be_null.”);
if (uiNumFeatures = 0)

throw std::out_of_range (”uiNumFeatures_must_be_positive.”);
if (uilnputWidth = 0)

throw std::out_of_range (" uilnputWidth_must_be_positive.”);
if (uilnputHeight = 0)

throw std::out_of_range (7 uilnputHeight_must_be_positive.”);
if (uilnputDepth = 0)

throw std::out_of_range (7 uilnputDepth_must_be_positive.”);

m_uilnputWidth = uilnputWidth;
m_uilnputHeight = uilnputHeight;
m_uilnputDepth = uilnputDepth;

std :: size_t uiNumWeights = 0;
for (int i = 0; i < (int)uiNumFeatures; i++)
{

uiNumWeights += arrFilters [i]—>getFilterElementsCount () ;

}

m_weights. resize (uiNumWeights) ;
m_biases.resize (uiNumFeatures) ;

m_uiOutputWidth = 0;

m_uiOutputHeight = 0;

m_features.resize (uiNumFeatures) ;

for (int i = 0; i < (int)uiNumFeatures; i++)

m_features[i] = std::shared_ptr<Feature32>(
new Feature32(arrFeatureSteps[i], xarrFilters[i],
m_biases, i,
m_weights, i * arrFilters[i]->getFilterElementsCount (),
uilnputWidth, uilnputHeight, i,
FeatureKey ()));

if (m-uiOutputWidth = 0)
m_uiOutputWidth = m_features[i]—>getOutputWidth () ;
else if (m_uiOutputWidth != m_features[i]—>getOutputWidth ())
throw std::runtime_error ("New._feature_does._not_match_width_of_pre—
— existing._features.”);
if (m_uiOutputHeight =— 0)
m_uiOutputHeight = m_features|[i]—>getOutputHeight () ;
else if (m_uiOutputHeight != m_features[i]—>getOutputHeight ())
throw std::runtime_error ("New._feature_does_not_match_height_of_pre
— —existing._features.”);
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m_uiNumNeuronsPerFeature = m_uiOutputWidth * m_uiOutputHeight;
std:: size_t uiNumNeurons = m_uiNumNeuronsPerFeature x* uiNumFeatures;
m_activations.resize (uiNumNeurons * m_uiMinibatchSize);
m_weighted_input.resize (uiNumNeurons * m_uiMinibatchSize);
m_deltas.resize (uiNumNeurons * m_uiMinibatchSize);
m_neurons . resize (uiNumNeurons) ;
std::size_t uiTotalConnectionsIn = 0;
for (int feature_i = 0; feature_i < (int)uiNumFeatures; feature_i++)

uiTotalConnectionsIn += (m_uiNumNeuronsPerFeature * m_features|

— feature_i]->getFilter ()—>getFilterElementsCount());

m_arrConnectionsIn.resize (uiTotalConnectionsIn);

std:: size_t uiNumConnectionsMade = 0;
for (int feature_i = 0; feature_i < (int)uiNumFeatures; feature_i++)
uiNumConnectionsMade += createConvolutionStructure (feature_i
— uiNumConnectionsMade ) ;

m_bufferPrevActivationT .resize (m_prevLayer.getActivationsVector().size

= ());

m_bufferConvolutionT .resize (m_weighted_input. size ());

m_bufferSparseWeights.resize (uiTotalConnectionsIn) ;
m_bufferSparseRowsPtr.resize (uiNumNeurons + 1);

m_bufferSparseRowsPtr [0] = 0;
for (int neuron_i = 0; neuron.i < (int)uiNumNeurons; neuron_i++)
m_bufferSparseRowsPtr [neuron_i + 1] = m_bufferSparseRowsPtr [neuron_i
= ]+

(int) (this—>getNeuron (neuron_i).
< getConnectionsInCount () );

}

std::size_t NeuralNetwork:: Convolutional:: ConvolutionalLayer32::
— createConvolutionStructure (std:: size_t uiFeaturelndex, std::size_t
< uiConnectionsMade)

std::size_t uiRetvalNumConnections = 0;
Feature32 &feature = sxm_features|[uiFeaturelndex |;
std::size_t neuron_i = m_uiNumNeuronsPerFeature * uiFeaturelndex;

for (std::size_t outputY = 0; outputY < feature.getOutputHeight () ;
— outputY++)
{

std::size_t inputTop = outputY =* feature.getStep();
for (std::size_t outputX = 0; outputX < feature.getOutputWidth () ;
— outputX++)

{

std::size_t inputLeft = outputX * feature.getStep();
std::size_t uiConnectionInlndex = uiConnectionsMade +
— uiRetvalNumConnections;

ConvolutionalNeuron32 sxneuron;
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}

}
}

return uiRetvalNumConnections;

m_neurons [neuron-i] = std::shared_ptr<Neuron32>(
neuron = new ConvolutionalNeuron32(m_activations
m_biases, feature.getLayerIndex(),
m_weighted_input ,
m_deltas ,
m_weights , feature.getStartWeight (), feature.getFilter ()—
— getFilterElementsCount () ,
m_arrConnectionsIn, uiConnectionInIndex ,
neuron_i ,
m_neurons. size (), m_uiMinibatchSize , m_NeuronKey)

)5

for (std::size_t filterZ = 0; filterZ < feature.getFilter ()—
— getDepthCount (); filterZ-++)
{

std::size_t channel = feature.getFilter ()—>getDepthIndices () |
— filterZ];

std:: size_t inputY = inputTop;

for (std::size_t filterY = 0; filterY < feature.getFilter ()—>
— getHeight (); filterY++)

{

std :: size_t inputX = inputLeft;

for (std::size_t filterX = 0; filterX < feature.getFilter ()—>
— getWidth (); filterX++)

{

std::size_t neuron_from_index = (channel * m_uilnputHeight +
— inputY) % m_uilnputWidth + inputX;

neuron—>UpdateConnectionIn (feature.getFilter ()—>
— getFilterElementIndex (filterX , filterY , filterZ),
m_prevLayer. getNeuron (neuron_from_index));

inputX++;

}

inputY++;

}

uiRetvalNumConnections += feature.getFilter ()—>
— getFilterElementsCount () ;
neuron_i+-;
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B.6 File: kconvneuron.h

#ifndef KFFANN_.CONVOLUTIONALNEURON_H
#define KFFANN_.CONVOLUTIONAL NEURON_H

#include <vector>
#include <unordered_set>
#include <stdexcept>

#include 7"mkl.h”
#include "kneuron.h”

#include "ktypeutils. h”

namespace NeuralNetwork

{

namespace Convolutional

{

class ConvolutionalNeuron32 : public Neuron32
{
public:
ConvolutionalNeuron32 (std :: vector<float > &activation ,
KUtilities :: atomic_vector<float > &biases , std::size_t
— uiBiasIndex ,
std :: vector<float > &weighted_inputs ,
KUtilities :: atomic_vector<float > &deltas ,
KUtilities :: atomic_vector<float > &weights , std::size_t
< uiStartWeight , std::size_t uiNumWeights,
std ::vector<int32_t> &arrConnectionsIn , std::size_t
< uiConnectionInIndex ,
std::size_t uiLayerIndex, std::size_t uiLayerNeuronCount
< , std::size_t uiMinibatchSize, const NeuronKey &
— key)
Neuron32(activation , biases, uiBiasIndex, weighted_inputs,
— deltas,
weights , uiStartWeight , uiNumWeights,
uiLayerIndex , uiLayerNeuronCount, uiMinibatchSize, key),
m_arrConnectionsIn (arrConnectionsIn),
m_uiConnectionInIndex (uiConnectionInIndex)

{1}

/// <summary>

/// Updates the connection with weight index by specifying

/// that it is a connection coming from neuron_from.

/// </summary>

void UpdateConnectionIn(std::size_t index, Neuron32 &neuron_from)

{
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m_arrConnectionsIn [m_uiConnectionInIndex + index] = (int32_t)
— mneuron_from.getLayerIndex () ;

}

int32_t getNeuronFromIndex(std::size_t connection_index)

{

return m_arrConnectionsIn[m_uiConnectionInIndex +
< connection_index];

}

/// <summary>

/// Returns the array of incoming connection indices to this
<5 neuron.

/// </summary>

const int32_t xgetNeuronFrom () const

{

return m_arrConnectionsIn.data() + m_uiConnectionInIndex;

}

private:
std ::vector<int32_t> &m_arrConnectionsIn;
std::size_t m_uiConnectionInIndex;

}s

typedef ConvolutionalNeuron32 ConvolutionalNeuron;

}
}

#endif

B.7 File: kfclayer.h

#ifndef KFFANNFULLY CONNECTED LAYER_H
#define KFFANNFULLY CONNECTED_LAYER_H

#include <vector>
#include "knnkeys.h”

#include 7 klayer.h”
#include 7 ktypeutils.h”

namespace NeuralNetwork

{

class Network32;

class FullyConnectedLayer32 : public TrainableLayer32

145

www.manharaa.com




public:

static const int LAYERTYPE = 402;

FullyConnectedLayer32 (const Network32 &network, std::size_t
— numNeurons,
const NeuralNetwork:: ActivationFunctions ::
— ITActivationFunction<float > &f,
const Layer32 &prevLayer, std::size_t uiMinibatchSize ,
— const LayerKey &key)
TrainableLayer32 (network , numNeurons, f, uiMinibatchSize, key),
m_prevLayer (prevLayer)

m_weights. resize (numNeurons * prevLayer.getNeuronCount());

m_neurons . resize (numNeurons) ;
for (std::size_.t i = 0; i < numNeurons; i++)
m_neurons |[i] = std::shared_ptr<Neuron32>(
new Neuron32(m_activations, m_biases,
— m-weighted_input, m-_deltas,
m_weights , prevLayer.getNeuronCount (), i,
— numNeurons ,
uiMinibatchSize , m_NeuronKey)
)
¥

FullyConnectedLayer32 (const FullyConnectedLayer32&) = delete;
FullyConnectedLayer32& operator=(const FullyConnectedLayer32&) =
— delete;

virtual “FullyConnectedLayer32 ()

{1}

int getLayerType() const override

{
return LAYER.TYPE;

}

/// <summary>

/// Returns the index of the preceeding layer inside
/// its mnetwork.

/// </summary>

std::size_t getPreviousLayerIndex () const override

{

return m_prevLayer.getNetworkIndex () ;

}

void Propagate() override;
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void Backpropagate (Layer32 &fromLayer) override;

void PostBackpropagate(float fInvMinibatchSize, float
< fInvTotalSamples) override;

void Save(std::ostream &fNum, const LayerKey &key) const;

static std::shared_ptr<FullyConnectedLayer32> Load(std::istream &
< fNum, const Network32 &network, std::size_t numNeurons,
const NeuralNetwork:: ActivationFunctions:: IActivationFunction<
— float> &f, const Layer32 &prevLayer, std::size_t
— uiMinibatchSize , const LayerKey &key);

protected:
void Load(std::istream &fNum, const LayerKey &key) ;

private:
std :: vector<float > m_buffer;
const Layer32 &m_prevLayer;

}s

typedef FullyConnectedLayer32 FullyConnectedLayer;

}

#endif

B.8 File: kfclayer.cpp

#include <cstdint>
#include <cstring>
#include “mkl.h”

#include "kinputlayer . h”
#include " kfclayer . h”

void NeuralNetwork :: FullyConnectedLayer32:: Propagate ()

{

std:: size_t minibatch_size = m_uiMinibatchSize;

std ::memcpy (m_weighted_input.data(), m_biases.data(), this—>
— getNeuronCount () * sizeof(float));
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KUtilities :: replicate_array (m_weighted_input.data(), this—
— getNeuronCount (), m_weighted_input.size());

int m = (int)minibatch_size;
int n = (int)this—>getNeuronCount () ;
int k = (int)m_prevLayer.getNeuronCount () ;
const float A = m_prevLayer.getActivations();
const float *B = this—>getWeights();
float *C = m_weighted_input.data();
cblas_sgemm ( CblasRowMajor ,

CblasNoTrans, CblasTrans,

m, n, k,

m_pfuncActivation—>f(m_activations.data(), m_weighted_input.data(),
— m_weighted_input.size ());

}

void NeuralNetwork :: FullyConnectedLayer32:: Backpropagate (NeuralNetwork ::
— Layer32 & fromLayer)

if (fromLayer.getLayerType() != NeuralNetwork::InputLayer64::
— LAYER.TYPE)
{

std :: memset (fromLayer. getDeltaVector () . unsafe_data(), 0, fromLayer.
— getDeltaVector ().size () * sizeof(float));

int m = (int)m_uiMinibatchSize;

int n = (int)fromLayer.getNeuronCount () ;
int k = (int)this—>getNeuronCount () ;
const float xa = this—>getDeltas();

int lda = k;

const float xb = this—>getWeights();

int 1db = n;

float xc = fromLayer.getDeltaVector () .unsafe_data () ;
int ldc = n;

cblas_sgemm ( CblasRowMajor, CblasNoTrans, CblasNoTrans,

m, 1, ka
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1.0,

a, lda,
b, ldb,
1.0,

c, ldec);

m_buffer.resize (fromLayer.getWeightedInputVector () .size ());
fromLayer. getActivationFunction () .df (m_buffer.data(), fromLayer.
— getWeightedInputValues (), m_buffer.size());
vsMul ((int )m_buffer.size (), fromLayer.getDeltaVector().data(),
— m_buffer.data(), fromLayer.getDeltaVector().unsafe_data());

for (std::size_t sample_.i = 0; sample_i < m_uiMinibatchSize; sample_i
— ++)
#pragma omp parallel for
for (int neuron_to_-i = 0; neuron_to_i < (int)this—>getNeuronCount();

< neuron_to_i++)

{

Neuron32 &neuron_to = this—>getNeuron(neuron_to_i);
cblas_saxpy ((int)fromLayer.getNeuronCount () ,
neuron_to.getDelta(sample_i),
fromLayer. getActivations (sample_i), 1,
neuron_to.getDeltaWeights (), 1);

neuron_to.DeltaBias += neuron_to.getDelta(sample_i);

}
}

void NeuralNetwork:: FullyConnectedLayer32:: PostBackpropagate(float
— fInvMinibatchSize , float fInvTotalSamples)
{

#pragma omp parallel for
for (int j = 0; j < (int)this—>getNeuronCount(); j++)

{

Neuron32 &neuron = this—>getNeuron(j);

neuron . UpdateWeights (fInvMinibatchSize , fInvTotalSamples);
neuron . UpdateBias (fInvMinibatchSize);

neuron . ScaleDeltaWeights () ;
neuron. ScaleDeltaBias () ;

}
}

void NeuralNetwork:: FullyConnectedLayer32:: Save(std :: ostream &fNum,
— const LayerKey &key) const

{

std ::uint64_t u_output;
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u_output = KUtilities:: UInt64 :: getLittleEndian (getWeightsCount () ) ;
fNum. write ((char*)&u_output, sizeof(u_output));
if ('fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: FullyConnectedLayer32 ::
— Save(std::ostream &fNum, _const.LayerKey _&key)]:._”
"Error_writing .number_of_weights.”);

fNum. write ((char)m_weights.data (), sizeof(float) * m_weights.size());
if (!fNum.good())
throw std::runtime_error (" [NeuralNetwork :: FullyConnectedLayer32 ::
— Save(std::ostream _&fNum, _const _LayerKey &key)]:._”
"Error_writing._all _weights.”);

fNum. write ((char*)m_biases.data (), sizeof(float) * m_biases.size());
if (! fNum.good())
throw std::runtime_error (7 |[NeuralNetwork :: FullyConnectedLayer3?2 ::
— Save(std ::ostream _&fNum, .const .LayerKey .&key)]:.”
"Error_writing._all _biases.”);

}

void NeuralNetwork :: FullyConnectedLayer32::Load(std :: istream & fNum,

{

— const LayerKey & key)

char buffer [8];

fNum.read (buffer , sizeof(std::int64_t));
it ('fNum.good() || fNum.gcount() != sizeof(std::int64_t))
throw std::runtime_error (” |[NeuralNetwork :: FullyConnectedLayer32 ::
— Load(std ::istream &Num, .const _LayerKey &key)]:.”
"Error_reading .number_of_weights.”);
std::size_t uiNumWeights = KUtilities :: UInt64 :: ToEndian (buffer , true);
if (uiNumWeights != this—>getWeightsCount ())
throw std::runtime_error (” [NeuralNetwork :: FullyConnectedLayer32 ::
— Load(std ::istream &fNum, _const _.LayerKey _&key)]:_”
"Number_of_weights_in_file_is.different._than_weights_in_layer.”);

fNum.read ((char*)m_weights. unsafe_data (), sizeof(float) * m_weights.
— size());
if (!MNum.good() || fNum.gcount () != sizeof(float) * m_weights.size())
throw std::runtime_error (7 [NeuralNetwork :: FullyConnectedLayer32 ::
— Load(std ::istream _&Num, _const _LayerKey &key)]:.”

"Error_reading._all _weights.”);

fNum.read ((char*)m_biases.unsafe_data (), sizeof(float) % m_biases.size
— )
if (!fNum.good() || fNum.gcount() != sizeof(float) * m_biases.size())
throw std::runtime_error (7 [NeuralNetwork :: FullyConnectedLayer3?2 ::
— Load(std ::istream _&fNum, .const _LayerKey . &key)]:.”
"Error.reading._all _biases.”);
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}

std :: shared_ptr<NeuralNetwork :: FullyConnectedLayer32> NeuralNetwork ::
< FullyConnectedLayer32::Load(std ::istream & fNum,
const Network32 & network, std::size_t numNeurons,
const NeuralNetwork:: ActivationFunctions :: TActivationFunction<float> &

— f,
const Layer32 & prevLayer, std::size_t uiMinibatchSize , const LayerKey
— & key)

std :: shared_ptr<FullyConnectedLayer32> retval = std::shared_ptr<
— FullyConnectedLayer32 >(
new FullyConnectedLayer32(network, numNeurons, f, prevLayer,
< uiMinibatchSize , key));

retval —>Load (fNum, key);

return retval;

B.9 File: kffann.h

#ifndef KFEED FORWARD_ARTIFICIAL NEURAL NETWORK_H
#define KFEED FORWARD_ARTIFICIAL NEURAL NETWORK_H

#include "ktypeutils. h”
#include "knetwork.h”
#include 7 klayer.h”
#include " kfclayer. . h”
#include "kconvlayer. h”
#include "kconvfeature.h”
#include " kconvfilter h”
#include 7 kconvneuron.h”
#include 7 kmaxpoollayer. h”
#include "kinputlayer . h”
#include 7 kfuncact.h”
#include "kfuncobj.h”
#include "kneuron.h”

#ifdef KNNREQUEST TRAINER
#include " ktrainer.h”
#endif

#endif
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B.10 File: kfuncact.h

#ifndef K ACTIVATION_AND_CUMULATIVE FUNCTIONS_H
#define K ACTIVATION_AND_CUMULATIVE_ FUNCTIONS_H

#include <iostream>

#include <memory>
#include <vector>
#include <stdexcept>
#include <sstream>
#include <cmath>
#include <algorithm>
#include <cstring>

#include " klayer . h”
#include "knnkeys.h”

#include " ktypeutils.h”

namespace NeuralNetwork

{

namespace ActivationFunctions
{
enum ActivationFunctionID {

STEP_ID = 101,
INVERTED_STEP_ID,
HYPERBOLIC_TANGENTID,
SIGMOID_ID,
IDENTITY_ID,
SOFTMAX ID,
RELU_ID

}s

/// <summary>

/// Encapsulates the identity activation function.
/// </summary>

class Identity32 : public TActivationFunction<float >

{

public:

/// <summary>

/// ID of the activation function.
/// </summary>

int getID() const override

return ActivationFunctionID ::IDENTITY_ID;
}

/// <summary>
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/// Creates new IActivationFunction<float> object which parameters
— are

/// a copy of this activation function.

/// </summary>

std :: shared_ptr<NeuralNetwork :: ActivationFunctions ::
— TActivationFunction<float>> CreateCopy () const override

{

return std::shared_ptr<IActivationFunction<float >>(new
— Identity32());
}

/// <summary>

/// Activation function.

/// </summary>

void f(float =xactivations, const float xweighted_inputs, std::
— size_t size) override

{

std ::memecpy(activations , weighted_inputs, size * sizeof(float));

}

/// <summary>

/// Value of the first derivative of the activation function.

/// </summary>

void df(float =xresult, const float xweighted_inputs, std::size_t
— size) override

std:: fill_n (result, size, 1.0f);

}

void Save(std::ostream &fNum, const ActivationFunctionKey &key)
— const override

{1}

/// <summary>
/// Loads an identity function from stream and returns a pointer
— to it.
/// </summary>
static std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float>> Load(std ::istream &Num, const
— ActivationFunctionKey &key)
{
return std::shared_ptr<IActivationFunction<float >>(new
— Identity32());
}

}s

/// <summary>

/// Encapsulates the Step function.

/// </summary>

class Step32 : public TActivationFunction<float>
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public:

Step32(float threshold = 0.0) : Threshold(threshold)
{1}

/// <summary>

/// ID of the activation function.
/// </summary>

int getID() const override

return ActivationFunctionID :: STEP_ID;

}

float Threshold;

/// <summary>

/// Creates new IActivationFunction<float> object which parameters
— are

/// a copy of this activation function.

/// </summary>

std :: shared_ptr<NeuralNetwork :: ActivationFunctions ::
— TActivationFunction<float>> CreateCopy () const override

{

return std::shared_ptr<IActivationFunction<float >>(new Step32(
— Threshold));
}

/// <summary>

/// Activation function.

/// </summary>

void f(float =xactivations, const float xweighted_inputs, std::
— size_t size) override

{

#pragma omp parallel for
for (int 1 = 0; i < (int)size; i++)
activations[i] = (weighted_inputs[i] <= Threshold ? 0.0f : 1.0
= f);

}

/// <summary>

/// Value of the first derivative of the activation function.

/// </summary>

void df(float s*result, const float xweighted_inputs, std::size_t
— size) override

std:: fill _n (result, size, 0.0f);

}

void Save(std::ostream &fNum, const ActivationFunctionKey &key)
— const override
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fNum. write (( char «)&this —>Threshold, sizeof(float));
if (!fNum.good())
throw std::runtime_error (” [NeuralNetwork :: ActivationFunctions
< ::Step::Save(std::ostream &fNum, .const.
— ActivationFunctionKey &key) |: .Error_writing.step.
— threshold.”);

}

/// <summary>
/// Loads a step function from stream and returns a pointer to it.
/// </summary>
static std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float>> Load(std ::istream &Num, const
— ActivationFunctionKey &key)

float threshold;
fNum. read ((charx)&threshold , sizeof(float));
if (!fNum.good() || fNum.gcount() != sizeof(float))
throw std::runtime_error(” [NeuralNetwork:: ActivationFunctions
< ::Step::Load(std::istream &fNum, .const .
— ActivationFunctionKey &key) |: Error._reading._step .
< threshold.”);

return std::shared_ptr<IActivationFunction<float >>(new Step32(
< threshold));
}

}s

/// <summary>

/// Encapsulates the Inverted Step function.
/// </summary>

class InvertedStep32 : public Step32

{

public:

InvertedStep32 (float threshold = 0.0) : Step32(threshold)
{3

/// <summary>

/// ID of the activation function.
/// </summary>

int getID() const override

return ActivationFunctionID :: INVERTED_STEP.ID;
}

/// <summary>

/// Creates new IActivationFunction<float> object which parameters
— are

/// a copy of this activation function.
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/// </summary>
std ::shared_ptr<NeuralNetwork :: ActivationFunctions ::

— TActivationFunction<float>> CreateCopy () const override
{

return std::shared_ptr<IActivationFunction<float >>(new
< InvertedStep32 (Threshold));

}

/// <summary>

/// Activation function.

/// </summary>

void f(float xactivations, const float xweighted_inputs, std::
— size_t size) override

{

#pragma omp parallel for
for (int i = 0; i < (int)size; i++)
activations[i] = (weighted_inputs[i] >= Threshold ? 0.0f : 1.0
— f);

}

/// <summary>
/// Loads a step function from stream and returns a pointer to it.
/// </summary>
static std::shared_ptr<NeuralNetwork:: ActivationFunctions::
< TActivationFunction<float>> Load(std ::istream &fNum, const
< ActivationFunctionKey &key)

float threshold;
fNum. read ((charx)&threshold , sizeof(float));
if (!fNum.good () || fNum.gcount () != sizeof(float))
throw std::runtime_error (7 [NeuralNetwork :: ActivationFunctions
— ::InvertedStep ::Load(std ::istream &fNum, _const.
— ActivationFunctionKey &key) ]: _Error.reading._step .
— threshold.”);

return std::shared_ptr<IActivationFunction<float >>(new
— InvertedStep32 (threshold));

}
}s

/// <summary>
/// Encapsulates the hyperbolic tangent activation function.
/// </summary>
class HyperbolicTangent32 : public TActivationFunction<float >

{

public:

/// <summary>
/// Default constructor. Initializes a hyperbolic tangent
/// activation function of the form f(x) = tanh(x).
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/// </summary>
HyperbolicTangent32 () : HyperbolicTangent32 (1.0, 1.0, 0.0, 0.0)

{1}

/// <summary>

/// Initializes a hyperbolic tangent activation function of the
— form

/// f(x) = a % tanh(b * x + ¢) + d

/// </summary>

HyperbolicTangent32(float a, float b, float c, float d)
m-a(a), mb(b), mec(c), md(d), m-bDirtyCache(true) { }

/// <summary>

/// ID of the activation function.
/// </summary>

int getID() const override

return ActivationFunctionID :: HYPERBOLIC_ TANGENTID;
}

/// <summary>

/// f(x) =A % tanh(B x x + C) + D
/// </summary>

float getA () const

{
}

/// <summary>

/// f(x) =A % tanh(B * x + C) + D
/// </summary>

void setA(float value)

{

return m-.a;

m_a = value;
m_bDirtyCache = true;

}

/// <summary>

/// f(X) = A x tanh(B * X +C) + D
/// </summary>

float getB() const

return m.b;

}

/// <summary>

/// f(x) =A * tanh(B * x + C) + D
/// </summary>

void setB(float value)

{

m_b = value;
m_bDirtyCache = true;
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/// <summary>

/// f(x) =A % tanh(B x x + C) + D
/// </summary>

float getC() const

return m.c;
}
/// <summary>
/// f(x) =A x tanh(B *x x + C) + D
/// </summary>
void setC(float value)
{
m_c = value;
m_bDirtyCache = true;

}

/// <summary>

/// f(x) =A % tanh(B x x + C) + D
/// </summary>

float getD() const

{
}

/// <summary>

/// f(x) =A % tanh(B * x + C) + D
/// </summary>

void setD(float value)

{

return m.d;

m.d = value;
m_bDirtyCache = true;

}

/// <summary>

/// Creates new IActivationFunction<float> object which parameters
— are

/// a copy of this activation function.

/// </summary>

std :: shared_ptr<NeuralNetwork :: ActivationFunctions ::
— TActivationFunction<float>> CreateCopy () const override

{

return std::shared_ptr<IActivationFunction<float >>(new
< HyperbolicTangent32(getA (), getB(), getC(), getD()));

}

void df(float =xresult, const float xweighted_inputs, std::size_t
— size) override
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if (m_bDirtyCache ||
m_cache_weighted_input != weighted_inputs || m_cache_size !=
— size)
updateCache (weighted_inputs, size);

vsSqr ((int)size , m_cache_tanh.data(), m_cache_scalar.data());

float AB = getA () * getB();

std:: fill_n (result , size, AB);

cblas_saxpy ((int)size , —AB, m_cache_scalar.data(), 1, result, 1)
3

}

/// <summary>

/// Activation function.

/// </summary>

void f(float xactivations, const float xweighted_inputs, std::
— size_t size) override

{

updateCache (weighted_inputs, size);

std:: fill _n (activations , size, getD());
cblas_saxpy ((int)size , getA(), m_cache_tanh.data(), 1,
< activations , 1);

}

void Save(std::ostream &fNum, const ActivationFunctionKey &key)
— const override

fNum. write (( char«)&this—>m_a, sizeof(float));
if (!fNum.good())
throw std::runtime_error(” [NeuralNetwork:: ActivationFunctions
— ::HyperbolicTangent :: Save(std :: ostream .&fNum, _const .
— ActivationFunctionKey &key) |: .Error_writing .
— HyperbolicTangent _parameter_A.”);

fNum. write ((char)&this—>mb, sizeof(float));
if (!fNum.good())
throw std::runtime_error (" [NeuralNetwork :: ActivationFunctions
— ::HyperbolicTangent :: Save(std :: ostream -&fNum, _const .
— ActivationFunctionKey &key) ]: _Error_writing.
— HyperbolicTangent .parameter_B.”);

fNum. write (( charx)&this—>m_c, sizeof(float));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: ActivationFunctions
— ::HyperbolicTangent :: Save(std :: ostream .&fNum, _const .
— ActivationFunctionKey .&key) ]: .Error_.writing.
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— HyperbolicTangent _parameter _C.”);

fNum. write ((char)&this—>m_d, sizeof(float));
if (!fNum.good())
throw std::runtime_error(” [NeuralNetwork:: ActivationFunctions
— ::HyperbolicTangent :: Save(std :: ostream -&fNum, _const .
— ActivationFunctionKey &key) ]: _Error_writing.
— HyperbolicTangent .parameter.D.”);

}

/// <summary>

/// Loads a hyperbolic tangent function from stream and returns a
— pointer to it.

/// </summary>

static std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float>> Load(std ::istream &Num, const
— ActivationFunctionKey &key)

float a, b, ¢, d;

fNum. read ((char)&a, sizeof(float));
if (!fNum.good() || fNum.gcount() != sizeof(float))
throw std::runtime_error (” [NeuralNetwork :: ActivationFunctions
< ::HyperbolicTangent :: Load (std :: istream .&fNum, _.const .
— ActivationFunctionKey &key) |: .Error_reading.
— HyperbolicTangent _parameter _A.”);

fNum. read ((charx)&b, sizeof(float));
if (!fNum.good() || fNum.gcount() != sizeof(float))
throw std::runtime_error (7 [NeuralNetwork :: ActivationFunctions
— ::HyperbolicTangent :: Load (std :: istream .&fNum, _const .
— ActivationFunctionKey &key) |: Error._reading.
— HyperbolicTangent _parameter _B.”);

fNum. read ((charx)&c, sizeof(float));
if (!fNum.good () || fNum.gcount() != sizeof(float))
throw std::runtime_error (7 [NecuralNetwork :: ActivationFunctions
— ::HyperbolicTangent :: Load (std :: istream -&fNum, _const .
— ActivationFunctionKey &key) ]: _Error_.reading.
— HyperbolicTangent .parameter.C.”);

fNum. read ((char*)&d, sizeof(float));
if (!fNum.good() || fNum.gcount() != sizeof(float))
throw std::runtime_error (7 [NeuralNetwork :: ActivationFunctions
< ::HyperbolicTangent :: Load (std :: istream .&fNum, .const .
— ActivationFunctionKey . &key) ]: .Error.reading.
— HyperbolicTangent _parameter.D.”);

return std::shared_ptr<IActivationFunction<float >>(new
— HyperbolicTangent32(a, b, c, d));
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private:

void updateCache(const float xweighted_inputs, std::size_t size)
{
if (m_cache_scalar.size() != size)
m_cache_scalar.resize (size);

m_cache_scalar.assign (size , getC());
m_cache_tanh.resize (size);

m_cache_weighted_input = weighted_inputs;
m_cache_size = size;

cblas_saxpy ((int)size, getB(), weighted_inputs, 1,
— m_cache_scalar.data(), 1);
vsTanh ((int)size, m_cache_scalar.data(), m_cache_tanh.data());

m_bDirtyCache = false;

}

bool m_bDirtyCache;

const float xm_cache_weighted_input;
std::size_t m_cache_size;

std :: vector<float> m_cache_scalar;
std :: vector<float> m_cache_tanh;

float m_a;
float m_b;
float m_c;
float m.d;

}s

/// <summary>

/// Encapsulates a sigmoid activation function (see remarks).
/// </summary>

class Sigmoid32 : public TActivationFunction<float>

{

public:

/// <summary>

/// Default constructor. Initializes a sigmoid activation
/// function of the form f(x) =1 / (1 + e"—x).

/// </summary>

Sigmoid32() : Sigmoid32(1.0, —-1.0, 0.0, 0.0)

{3

/// <summary>
/// Initializes a sigmoid activation function of the form
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/] f(x) =a / (1 +e(bxx+c)) +d

/// </summary>

Sigmoid32 (float a, float b, float c, float d)
ma(a), mb(b), mc(c), md(d), m_bDirtyCache(true)

/// <summary>

/// ID of the activation function.
/// </summary>

int getID() const override

return ActivationFunctionID :: SIGMOID_ID;
}

/// <summary>

/] f(x) =A /) (1 +e(Bxx+C)) +D
/// </summary>

float getA () const

return m.a;
}
/// <summary>
/] f(x) =A/ (1 +e Bx*xx+C))+D
/// </summary>
void setA(float value)
{
m_a = value;
m_bDirtyCache = true;

}

/// <summary>

/1] f(x) =A /) (1 +e(Bxx+C))+D
/// </summary>

float getB() const

return m.b;
}
/// <summary>
/] f(x) =A/ (1 +e Bxx+C))+D
/// </summary>
void setB(float value)
{
m_b = value;
m_bDirtyCache = true;

}

/// <summary>
/] f(x) =A /) (1 +e(B=x*xx+C))+D
/// </summary>
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float getC() const

{

return m._c;
¥
/// <summary>
//] f(x) =A/ (1 +e (Bxx+C))+D
/// </summary>
void setC(float value)
{
m_c = value;
m_bDirtyCache = true;

}

/// <summary>

/)] f(x) =A/ (1 +e(Bxx+C))+D
/// </summary>

float getD() const

return m.d;
}
/// <summary>
[/ f(x) =A/ (1 + e (Bxx+C)) +D
/// </summary>
void setD(float value)
{
m_-d = value;
m_bDirtyCache = true;

}

/// <summary>

/// Creates new IActivationFunction<float> object which parameters
— are

/// a copy of this activation function.

/// </summary>

std :: shared_ptr<NeuralNetwork :: ActivationFunctions ::
— TActivationFunction<float>> CreateCopy () const override

{

return std::shared_ptr<IActivationFunction<float >>(new Sigmoid32
} < (getA(), getB(), getC(), getD()));

void df(float =xresult, const float xweighted_inputs, std::size_t
— size) override
{

if (m_bDirtyCache ||
m_cache_weighted_input != weighted_inputs || m_cache_size !=
— size)
updateCache (weighted_inputs, size);
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vsSqr ((int)size , m_cache_exp.data(), m_cache_scalar.data());

std ::memset(result , 0, size x sizeof(float));

cblas_saxpy ((int)size , —getA() * getB(), m-_cache_exp.data(), 1,
— result, 1);

cblas_saxpy ((int)size , getA() * getB(), m_cache_scalar.data(),
— 1, result, 1);

}

void f(float xactivations, const float xweighted_inputs, std::
< size_t size) override
{

updateCache (weighted_inputs , size);
std:: fill_n (activations , size, getD());

cblas_saxpy ((int)size , getA(), m_cache_exp.data(), 1,
— activations, 1);

}

void Save(std::ostream &Num, const ActivationFunctionKey &key)
— const override

fNum. write ((char)&this—>m_a, sizeof(float));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: ActivationFunctions
— ::Sigmoid:: Save(std ::ostream &fNum, _const .
— ActivationFunctionKey &key) |: cError_writing.Sigmoid .
— parameter_A.”);

fNum. write (( char «)&this—>m-Db, sizeof(float));
if (!fNum.good())
throw std::runtime_error(” [NeuralNetwork:: ActivationFunctions
< ::Sigmoid::Save(std:: ostream &Num, _const
— ActivationFunctionKey &key) |: Error_writing.Sigmoid .
< parameter_B.”);

fNum. write ((char)&this—>m_c, sizeof(float));
if (!fNum.good())
throw std::runtime_error (" [NeuralNetwork :: ActivationFunctions
— ::Sigmoid :: Save(std ::ostream &fNum, _const .
— ActivationFunctionKey &key) ]: _Error_.writing _.Sigmoid .
— parameter.C.”);

fNum. write ((charx)&this—>m._d, sizeof(float));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: ActivationFunctions
— ::Sigmoid:: Save(std:: ostream &Num, _const.
— ActivationFunctionKey &key) |: cError_writing.Sigmoid .
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— parameter.D.”);

}

/// <summary>

/// Loads a sigmoid function from stream and returns a pointer to
— it.

/// </summary>

static std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float>> Load(std ::istream &fNum, const
< ActivationFunctionKey &key)

float a, b, c, d;

fNum.read ((charx)&a, sizeof(float));
if (!fNum.good() || fNum.gcount () != sizeof(float))
throw std::runtime_error (7 [NeuralNetwork :: ActivationFunctions
— ::Sigmoid :: Load(std ::istream &fNum, _const .
— ActivationFunctionKey .&key) ]: .Error.reading.
— HyperbolicTangent .parameter_A.”);

fNum. read ((char*)&b, sizeof(float));
if (!fNum.good() || fNum.gcount() != sizeof(float))
throw std::runtime_error (” [NeuralNetwork :: ActivationFunctions
— ::Sigmoid:: Load(std ::istream .&fNum, _const .
— ActivationFunctionKey &key) |: .Error_reading.
— HyperbolicTangent _parameter .B.”);

fNum. read ((charx)&c, sizeof(float));
if (!fNum.good() || fNum.gcount() != sizeof(float))
throw std::runtime_error (7 [NeuralNetwork :: ActivationFunctions
< ::Sigmoid::Load(std::istream .&Num, _const .
— ActivationFunctionKey &key) |: Error._reading.
— HyperbolicTangent _parameter _C.”);

fNum. read ((charx)&d, sizeof(float));
if (!fNum.good () || fNum.gcount() != sizeof(float))
throw std::runtime_error (7 [NecuralNetwork :: ActivationFunctions
— ::Sigmoid::Load(std::istream &fNum, _const .
— ActivationFunctionKey &key) ]: _Error_.reading.
— HyperbolicTangent .parameter.D.”);

return std::shared_ptr<IActivationFunction<float >>(new Sigmoid32

— (a, b, ¢, d));
}

private:

void updateCache(const float sxweighted_inputs, std::size_t size)

{

if (m_cache_scalar.size() != size)
m_cache_scalar.resize (size);
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m_cache_exp.resize (size);

m_cache_weighted_input = weighted_inputs;
m_cache_size = size;

m_cache_scalar.assign (size, getC());
cblas_saxpy ((int)size , getB(), weighted_inputs, 1,
— m_cache_scalar.data(), 1);
vsExp ((int)size, m_cache_scalar.data(), m_cache_exp.data());

m_cache_scalar.assign (size, 1.0);
cblas_saxpy ((int)size, 1.0, m_cache_exp.data(), 1,
— m_cache_scalar.data(), 1);
vsInv ((int)size , m_cache_scalar.data(), m_cache_exp.data());

m_bDirtyCache = false;

}

bool m_bDirtyCache;

const float xm_cache_weighted_input;
std::size_t m_cache_size;

std :: vector<float> m_cache_scalar;
std :: vector<float> m_cache_exp;

float m_a;
float m.b;
float m_c;
float m.d;

}s

/// <summary>

/// Encapsulates the activation function for a rectified linear
/// unit (ReLU) (see remarks).

/// </summary>

class ReLU32 : public TActivationFunction<float>

{

public:

ReLU32(float leak = 0.0) : Leak(leak)
{3

/// <summary>

/// ID of the activation function.
/// </summary>

int getID() const override

return ActivationFunctionID :: RELU_ID;
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/// <summary>

/// Creates new IActivationFunction<float> object which parameters
— are

/// a copy of this activation function.

/// </summary>

std :: shared_ptr<NeuralNetwork :: ActivationFunctions ::
— TActivationFunction<float>> CreateCopy () const override

{

return std::shared_ptr<IActivationFunction<float >>(new ReLU32(
< Leak));

}

/// <summary>

/// Activation function.

/// </summary>

void f(float *xactivations, const float xweighted_inputs, std::
— size_t size) override

{

std ::memcpy(activations , weighted_inputs, size x sizeof(float));
#pragma omp parallel for
for (int 1 = 0; i < (int)size; i++)
if (activations[i] < 0)
activations [i] *= Leak;

}

/// <summary>

/// Value of the first derivative of the activation function.

/// </summary>

void df(float =xresult, const float xweighted_inputs, std::size_t
— size) override

{

#pragma omp parallel
for (int 1 = 0; i < (int)size; i++)
result [i] = (weighted_inputs[i] > 0.0f ? 1.0f : Leak);

}

void Save(std::ostream &Num, const ActivationFunctionKey &key)
— const override
{

fNum. write ((char«)&this —>Leak, sizeof(float));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: ActivationFunctions
— ::ReLU:: Save(std ::ostream &tNum, _const .
— ActivationFunctionKey .&key) ]: cError_.writing .ReLU._leak .
— value.”);

}

/// <summary>
/// Loads a step function from stream and returns a pointer to it.
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/// </summary>

static std::shared_ptr<NeuralNetwork:: ActivationFunctions::
— TActivationFunction<float>> Load(std ::istream &Num, const
— ActivationFunctionKey &key)

float leak;
fNum. read ((char x)&leak , sizeof (float));
if (!fNum.good() || fNum.gcount() != sizeof(float))

throw std::runtime_error(” [NeuralNetwork:: ActivationFunctions
— ::ReLU:: Load(std ::istream -&fNum, _const .
— ActivationFunctionKey &key) |: Error._reading._step.
— threshold.”);

return std::shared_ptr<IActivationFunction<float >>(new ReLU32(
— leak));

}

float Leak;
b

/// <summary>

/// Encapsulates the softmax activation function (see remarks).
/// </summary>

class Softmax32 : public TActivationFunction<float>

{

public:

Softmax32(std :: size_t minibatch_size)
m_uiMinibatchSize (minibatch_size) ,
m_bDirtyCache (true)
{
if (minibatch_size < 1)
throw std::invalid_argument (" Minibatch_size _must_be_at_least _
— 1.7);
cache_sum_exp.resize (minibatch_size, 0.0);

}

/// <summary>

/// ID of the activation function.
/// </summary>

int getID () const override

return ActivationFunctionID ::SOFTMAXID;
}

/// <summary>

/// Creates new IActivationFunction<float> object which parameters
< are

/// a copy of this activation function.

/// </summary>
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std :: shared_ptr<NeuralNetwork :: ActivationFunctions ::
— TActivationFunction<float>> CreateCopy () const override
{

return std::shared_ptr<IActivationFunction<float >>(new Softmax32
— (m_uiMinibatchSize));
}

/// <summary>
/// Activation function.

/// </summary>
void f(float xactivations, const float xweighted_inputs, std::

— size_t size) override

updateCache (weighted_inputs, size, size / m_uiMinibatchSize);

vsExp ((int)size , weighted_inputs, m_cache_scalar.data());
std :: memset(activations, 0, size * sizeof(float));
#pragma omp parallel for
for (int sample_.i = 0; sample_i < (int)m_uiMinibatchSize;
< sample_i++)
cblas_saxpy ((int )m_sample_size, 1.0f / cache_sum_exp[sample_i
= ],
m_cache_scalar.data() + sample_i * m_sample_size, 1,
activations 4+ sample_i * m_sample_size, 1);

}

/// <summary>
/// Value of the first derivative of the activation function.

/// </summary>
void df(float *result, const float xweighted_inputs, std::size_t

— size) override
{

if (m_bDirtyCache ||
weighted_inputs != m_weighted_inputs || size != m_size)
updateCache (weighted_inputs , size, size / m_uiMinibatchSize);

#pragma omp parallel for

for (int sample_.i = 0; sample_i < (int)m_uiMinibatchSize;
< sample_i++)
for (int i = 0; i < (int)m_sample_size; i++)

{

float e_zi = std::exp(weighted_inputs|[i + sample_i x
< m_sample_size]) ;
result [i + sample_.i * m_sample_size] = e_zi * (cache_sum_exp
— [sample_.i] — e_zi) /
(cache_sum_exp [sample_i] * cache_sum_exp|
— sample_i]);
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}

void Save(std::ostream &fNum, const ActivationFunctionKey &key)
— const override

{1}

/// <summary>

/// Loads a softmax function from stream and returns a pointer to
— it.

/// </summary>

static std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float>> Load(std ::istream &Num, std::
— size_t minibatch_size, const ActivationFunctionKey &key)

{

return std::shared_ptr<IActivationFunction<float >>(new Softmax32
< (minibatch_size));
}

private:
void updateCache(const float xweighted_inputs, std::size_t size,
— std::size_t sample_size)
{

m_cache_scalar.resize (size);

m_weighted_inputs = weighted_inputs;
m_sample_size = sample_size;
m_size = size;

vsExp ((int ) (sample_size % m_uiMinibatchSize), weighted_inputs,
< m_cache_scalar.data());

#pragma omp parallel for

for (int sample_.i = 0; sample_i < (int)m_uiMinibatchSize;
— sample_i++)

{

cache_sum_exp [sample_i] = cblas_sasum ((int)sample_size ,
< m_cache_scalar.data() + sample_.i * sample_size, 1);

}

m_bDirtyCache = false;

}

bool m_bDirtyCache;

const float *m_weighted_inputs;
std::size_t m_size;

std::size_t m_sample_size;
std::size_t m_uiMinibatchSize

std :: vector<float> m_cache_scalar;
std :: vector<float> cache_sum_exp;
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typedef Step32 Step;

typedef InvertedStep32 InvertedStep;

typedef HyperbolicTangent32 HyperbolicTangent;
typedef Sigmoid32 Sigmoid;

typedef Identity32 Identity;

typedef Softmax32 Softmax;

typedef ReLU32 ReLU;

}
}

#endif

B.11 File: kfuncobj.h

#ifndef K.OBJECTIVE_FUNCTIONS__H
#define K.OBJECTIVE_FUNCTIONS__H

#include <memory>
#include <vector>
#include <stdexcept>
#include <sstream>
#include <cmath>
#include <algorithm>

#include "mkl.h”
#include 7 ktrainer . h”

#include 7 ktypeutils.h”

namespace NeuralNetwork

{

namespace ObjectiveFunctions

{

/// <summary>
/// Encapsulates the Mean Square Error objective function.
/// </summary>
class MSE32 : public NeuralNetwork:: Trainer32:: IObjectiveFunction
{
public:
/// <summary>
/// Computes the error value of the objective function
/// based on the input values and the target values.
/// </summary>
float error(const float xvalues, const float xtarget, std::size_t
— size) override
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float retval = 0.0;
#pragma omp parallel for reduction(+:retval)
for (int i = 0; i < (int)size; i++)
{
float tmp = values[i] — target[i];
retval 4= (tmp * tmp);

}

return retval;

}

/// <summary>

/// Returns the partial derivative of the objective function

/// with respect to the objective function’s input vector’s

/// element index—th.

/// </summary>

void derror(float =xresult, const float xvalues, const float x
— target, std::size_t size) override

vsSub ((int)size , values, target, result);
}
b

/// <summary>

/// Encapsulates the Cross Entropy objective function.

/// </summary>

class CrossEntropy32 : public NeuralNetwork:: Trainer32::
— IObjectiveFunction

{

public:
/// <summary>
/// Computes the error value of the objective function
/// based on the input values and the target values.
/// </summary>
float error(const float xvalues, const float =xtarget, std::size_t

— size) override
{
float retval = 0.0;
#pragma omp parallel for reduction(+:retval)

for (int i = 0; 1 < (int)size; i++)

if (target[i] != 1 || values[i] 1)
retval 4= (target[i] * std:: g(values[ 1) + (1 — target[i])
— x std::log (1 — values[i]));

}

return —retval;

}

/// <summary>
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/// Returns the partial derivative of the objective function

/// with respect to the objective function’s input vector’s

/// element index—th.

/// </summary>

void derror(float *result, const float *values, const float x
— target, std::size_t size) override

{

#pragma omp parallel for
for (int i = 0; 1 < (int)size; i++)
result [i] = (values[i] — target[i]) /
(values[i] * (1 — values[i]));
}
b

typedef MSE32 MSE;
typedef CrossEntropy32 CrossEntropy;

}
}

#endif

B.12 File: kinputlayer.h

#ifndef KFFANNINPUT LAYER_H
#define K FFANNINPUT LAYER_H

#include <cstring>

#include "knnkeys.h”
#include " klayer . h”
#include 7kfuncact.h”
#include "ktypeutils. h”

namespace NeuralNetwork

{

class Network32;

class InputLayer32 : public Layer32

{

public:
static const int LAYERTYPE = 401;

InputLayer32(const Network32 &network, std::size_t numlnputs, std::
— size_t uiMinibatchSize, const LayerKey &key)
Layer32 (network, numInputs, NeuralNetwork:: ActivationFunctions ::
< Identity32 (), uiMinibatchSize , key)
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m_weights. clear () ;
m_neurons. resize (numInputs) ;
for (std::size_t i = 0; i < numlnputs; i++)
m-_neurons|[i] = std::shared_ptr<Neuron32>(
new Neuron32(m_activations, m_biases, m_weighted_input,
— m_deltas ,
m_deltas, 0, i, numInputs, uiMinibatchSize , m_NeuronKey)

)3

int getLayerType() const override

{
}

/// <summary>

/// Returns maximum size_t (equivalent to —1) since input layers
— have no previous layer.

/// </summary>

std::size_t getPreviousLayerIndex () const override

{
}

/// <summary>

/// Initializes the inputs of the input layer for
/// a whole minibatch to the specified vector.
/// </summary>

void InitializeInput (const float xarr)

{

return LAYER.TYPE;

return (std::size_t)(—1);

std ::memepy(m_activations.data(), arr, m_activations.size () x
— sizeof (float));

}

/// <summary>
/// Initializes the inputs of the input layer for
/// a specific sample of a minibatch to the specified vector.
/// </summary>
void InitializeInput (const float xarr, std::size_t sample)
{
std ::memepy(m_activations.data() + sample * getNeuronCount (), arr,
— getNeuronCount () * sizeof(float));

}

/// <summary>

/// Initializes the inputs of the input layer for
/// a whole minibatch to the specified vector.

/// </summary>

void InitializeInput (const std::vector<float> &input)
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}

{

InitializeInput (input.data());

}

void setBiases(const float xarr) override

{

Layer32::setBiases (arr);

InitializeInput (arr, 0);

}

void Propagate() override

{
}
}s

typedef InputLayer32 InputLayer;

#endif

B.13 File: klayer.h

#ifndef K FFANNLAYER H
#define K FFANNLAYER H

#include <vector>
#include <memory>

#include " ksafevector.h”
#include "knnkeys.h”

#include "kneuron.h”

#include "ktypeutils. h”

namespace NeuralNetwork

{

class Network32;

namespace ActivationFunctions

/// <summary>
/// Interface for Activation function for a neuron.

/// </summary>
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template <class real_t>
class TActivationFunction

{

public:

TActivationFunction ()

{1}

virtual "TActivationFunction ()

{1}

/// <summary>

/// Activation functions cannot be copied by default methods.

/// Use <see cref="TActivationFunction :: CreateCopy”/> instead.

/// </summary>

TActivationFunction<real_t >(const IActivationFunction<real_t> &) =
— delete;

TActivationFunction<real_t >& operator=(const IActivationFunction<
— real_t >&) = delete;

/// <summary>

/// ID of the activation function.
/// </summary>

virtual int getID () const = 0;

/// <summary>
/// Creates new IActivationFunction object which parameters are
/// a copy of this activation function.
/// </summary>
virtual std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<real_t>> CreateCopy() const = 0;

/// <summary>

/// Activation function.

/// </summary>

virtual void f(real_t xactivations, const real_t xweighted_inputs,
— std::size_t size) = 0;

/// <summary>

/// Value of the first derivative of the activation function.

/// </summary>

virtual void df(real_t *result, const real_t xweighted_inputs, std
< ::size_t size) = 0;

virtual void Save(std::ostream &Num, const ActivationFunctionKey
— &key) const = 0;
b

}

class Layer32
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public:

/// <summary>

/// Initializes the base components of the Layer32 class.

/// </summary>

Layer32(const Network32 &network, std::size_t numNeurons,
const NeuralNetwork:: ActivationFunctions :: [ActivationFunction<

— float > &f,

std::size_t uiMinibatchSize, const LayerKey &key)
m_activations (numNeurons % uiMinibatchSize),
m_biases (numNeurons) ,
m_weighted_input (numNeurons * uiMinibatchSize) ,
m_deltas (numNeurons % uiMinibatchSize),
m_uiMinibatchSize (uiMinibatchSize)

{

setActivationFunction (f);

}

Layer32(const Layer32&) = delete;
Layer32& operator=(const Layer32&) = delete;

virtual “Layer32()

{1}

virtual int getLayerType() const = 0;

/// <summary>

/// Returns whether this layer is trainable or not.
/// </summary>

virtual bool IsTrainable() const

{

return false;

}

/// <summary>
/// Returns a reference to the activation function for this neuron.
/// </summary>
ActivationFunctions :: IActivationFunction<float> &
— getActivationFunction () const
{

return xm_pfuncActivation;
}
/// <summary>
/// Replaces this neuron’s activation function by a copy of
/// the specified activation function.
/// </summary>
void setActivationFunction (const ActivationFunctions::
— TActivationFunction<float > &f)
{

m_pfuncActivation = f.CreateCopy () ;
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}

/// <summary>

/// Index of this layer inside its network.
/// </summary>

std::size_t getNetworkIndex () const

{

return m_uiNetworkIndex;

}

/// <summary>

/// ID of this layer inside its network. Alias for <see cref="
— Layer32.NetworkIndex”/>.

/// </summary>

std::size_t getID() const

{

return getNetworkIndex () ;

}

/// <summary>

/// Sets the index of this layer inside its network.

/// Only objects with the key can call this method.

/// </summary>

void setNetworkIndex (std::size_t value, const LayerKey &key)

{

setNetworkIndex (value);

}

/// <summary>

/// Returns the index of the preceeding layer inside
/// its network.

/// </summary>

virtual std::size_t getPreviousLayerIndex () const = 0;

/// <summary>

/// Returns a constant array pointing to the

/// activations for all the neurons in this layer

/// for the specified sample.

/// </summary>

const float xgetActivations(std::size_t sample = 0) const

{

return m_activations.data() + sample * getNeuronCount () ;

}

const std::vector<float>& getActivationsVector () const

{

return m_activations;

}

/// <summary>
/// Returns a constant array pointing to the
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/// biases for all the neurons in this layer.
/// </summary>
const float xgetBiases() comnst

{

return m_biases.data();

}

/// <summary>

/// Sets all the biases for the neurons in this layer.
/// </summary>

virtual void setBiases(const float sxarr)

{

m_biases.assign (m_biases.size (), arr);

}

/// <summary>

/// Returns a constant array pointing to the weighted input

/// values for all the neurons in this layer.

/// </summary>

const float xgetWeightedInputValues(std::size_t sample = 0) const

{

return m_weighted_input.data() 4+ sample * getNeuronCount () ;

}

const std::vector<float>& getWeightedInputVector () const

{

return m_weighted_input;

}

/// <summary>

/// Returns a constant array pointing to the delta
/// values for all the neurons in this layer.

/// </summary>

const float xgetDeltas(std::size_t sample = 0) const

{

return m_deltas.data() 4+ sample * getNeuronCount () ;

}

/// <summary>

/// Allows access to the array of deltas contained in this layer.
/// </summary>

KUtilities :: atomic_vector<float>& getDeltaVector ()

{

return m_deltas;

}

/// <summary>

/// Allows access to the array of deltas contained in this layer.
/// </summary>

const KUtilities :: atomic_vector<float>& getDeltaVector () const
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return m_deltas;

}

/// <summary>

/// Returns the number of neurons contained in this layer.
/// </summary>

virtual std::size_t getNeuronCount() const

{
}

/// <summary>

/// Returns a reference to the specified neuron.
/// </summary>

virtual Neuron32 &getNeuron(std::size_t index) const

{
}

/// <summary>

/// Returns the number of connections between this layer and the
— previous layer.

/// </summary>

std::size_t getConnectionsCount () const

{
}

/// <summary>

/// Returns the weights in this layer. This is equivalent to the
— number of

/// connections between this layer and the previous layer.

/// </summary>

std::size_t getWeightsCount () const

{
}

/// <summary>

/// Allows access to the array of weights contained in this layer.
/// </summary>

KUtilities :: atomic_vector<float>& getWeightsVector ()

{
}

/// <summary>

/// Allows access to the array of weights contained in this layer.
/// </summary>

const KUtilities :: atomic_vector<float>& getWeightsVector() const

return m_neurons. size () ;

return s*m_neurons.at (index);

return getWeightsCount () ;

return m_weights. size () ;

return m_weights;
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{
}

/// <summary>

/// Sets all the weights for the neurons in this layer.
/// </summary>

void setWeights(const float sxarr)

{

m_weights. assign (m_weights.size (), arr);

}

/// <summary>

/// Allows access to the array of weights contained in this layer.
/// nullptr if no weights.

/// </summary>

const float xgetWeights() const

{

return (m-_weights.size () > 0 ? m_weights.data() : nullptr);

}

virtual void Propagate() = 0;

return m_weights;

protected:
/// <summary>
/// Sets the index of this layer inside its network.
/// </summary>
virtual void setNetworkIndex (std::size_t value)

{

m_uiNetworkIndex = value;

}

std :: vector<float> m_activations;
std :: vector<float > m_weighted_input ;

KUtilities :: atomic_vector<float> m_biases;
KUtilities :: atomic_vector<float> m_deltas;

std::size_t m_uiMinibatchSize;

KUtilities :: atomic_vector<float> m_weights;
/// <summary>

/// Array of mneurons for this layer.

/// </summary>

std :: vector<std :: shared_ptr<Neuron32>> m_neurons;

std :: shared_ptr<NeuralNetwork :: ActivationFunctions ::
— TActivationFunction<float>> m_pfuncActivation;
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NeuronKey m_NeuronKey ;
private:
std :: size_t m_uiNetworkIndex;

bool m_bLocked;
i

/// <summary>
/// Interface for trainable layers.
/// </summary>
class TrainableLayer32 : public Layer32
{
public:
/// <summary>
/// Returns whether this layer is trainable or not.
/// </summary>
bool IsTrainable() const override

{

return true;

}

/// <summary>

/// Performs backpropagation by training weights

/// of connections between fromLayer and this layer.

/// </summary>

virtual void Backpropagate(NeuralNetwork :: Layer32 &fromLayer) = 0;

/// <summary>
/// Performs post backpropagation operation of updating
/// the actual weights of the layer neurons by the trained value.
/// </summary>
virtual void PostBackpropagate(float fInvMinibatchSize, float
< fInvTotalSamples) = 0;

/// <summary>

/// Initializes the base components of the Layer32 class.

/// </summary>

TrainableLayer32 (const Network32 &network, std::size_t numNeurons,
const NeuralNetwork:: ActivationFunctions:: [ActivationFunction<

— float > &f,

std::size_t uiMinibatchSize , const LayerKey &key)
Layer32(network, numNeurons, f, uiMinibatchSize , key)

{1}

TrainableLayer32 (const TrainableLayer32&) = delete;
TrainableLayer32& operator=(const TrainableLayer32&) = delete;

virtual "“TrainableLayer32 ()
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{3}
}

typedef Layer32 Layer;
typedef TrainableLayer32 TrainableLayer;

}

#endif

B.14 File: kloader.h

#ifndef KFFANN_.LOADER_H
#define KFFANN_LOADER_H

#include <istream>
#include <ostream>

#include 7 knetwork.h”
#include "knnkeys.h”
#include "ktypeutils. h”

namespace NeuralNetwork

{
class Loader32

{

public:
static const int VERSION = 1;

/// <summary>

/// Loads a mnetwork previously saved by Save() from the specified
— file.

/// </summary>

static bool Load(const char xsFilename, Network32 &network);

/// <summary>

/// Loads a mnetwork previously saved by Save() from the specified
— stream.

/// </summary>

static void Load(std::istream &fNum, Network32 &network);

/// <summary>

/// Saves a network previously to the specified file.

/// </summary>

static void Save(const char xsFilename, const Network32 &network);
/// <summary>

/// Saves a mnetwork previously to the specified stream.

/// </summary>
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static void Save(std::ostream &fNum, const Network32 &network);

}

typedef Loader32 Loader;

}

#endif

B.15 File: kloader.cpp

#include <fstream>
#include <stdexcept>

#include "kloader.h”

bool NeuralNetwork :: Loader32::Load(const char * sFilename, Network32 &
— network)
{

bool retval = true;
std::ifstream fNumln;

try

{

fNumlIn.open (sFilename , std::ofstream::in | std::ofstream ::binary);
if (!fNumln.is_open())
throw std::runtime_error (" Unable_to_open_specified_file.”);

}
catch (...)

{

if (fNumln.is_open ())
fNumIn. close () ;

retval = false;

}

it (retval)
Load (fNumIn, network);

if (fNumln.is_open ())
fNumlIn. close () ;

return retval;

}

void NeuralNetwork :: Loader32::Load(std ::istream & fNum, Network32 &

{

— mnetwork)

network . Load (fNum, { });
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}

void NeuralNetwork :: Loader32::Save(const char % sFilename, const
< Network32 & network)
{

std :: ofstream fNumOut;

fNumOut . open (sFilename , std::ofstream::out | std::ofstream::trunc
< std::ofstream :: binary);
if (!fNumOut.is_open ())
throw std::runtime_error (" Unable_to_open_specified _file.”);

try

{

}
catch (...)

{

Save (fNumOut, network);

if (fNumOut.is_open ())
fNumOut . close () ;

throw;

}

if (fNumOut.is_open ())
fNumOut . close () ;

}

void NeuralNetwork :: Loader32::Save(std::ostream & fNum, const Network32
— & network)
{

}

network . Save (fNum, {});

B.16 File: kmaxpoollayer.h

#ifndef KFFANNMAXPOOLLAYER_H
#define KFFANN MAXPOOLLAYER_H

#include <vector>
#include <stdexcept>

#include "knnkeys.h”
#include 7 kconvlayer.h”
#include 7 ktypeutils.h”

namespace NeuralNetwork
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{

class Network32;

namespace Convolutional

{

class MaxPoolLayer32 : public ConvolutionalLayer32

{

public:

static const int LAYERTYPE = 407,

/// <summary>
/// Initializes a new maxpool layer.
/// </summary>
MaxPoolLayer32 (const Network32 &network
std :: size_t uiPoolingWidth, std::size_t uiPoolingHeight , std::
— size_t uiPoolingStep,
const NeuralNetwork:: ActivationFunctions:: ActivationFunction<
— float> &f,
std ::size_t uilnputWidth, std::size_t uilnputHeight, std::size-t
— uilnputDepth ,
const Layer32 &prevLayer, std::size_t uiMinibatchSize , const
— LayerKey &key);

/// <summary>
/// Initializes a new maxpool layer using another convolutional
— layer as input layer.
/// </summary>
MaxPoolLayer32 (const Network32 &network,
std::size_t uiPoolingWidth, std::size_t uiPoolingHeight , std::
< size_t uiPoolingStep ,
const NeuralNetwork:: ActivationFunctions :: TActivationFunction<
— float> &f,
const ConvolutionalLayer32 &prevLayer, std::size_t
< uiMinibatchSize , const LayerKey &key)
MaxPoolLayer32 (network ,
uiPoolingWidth , uiPoolingHeight , uiPoolingStep ,
f7
prevLayer.getOutputWidth (), prevLayer.getOutputHeight (),
< prevLayer.getOutputDepth (),
prevLayer , uiMinibatchSize, key) { }

MaxPoolLayer32 (const MaxPoolLayer32&) = delete;
MaxPoolLayer32& operator=(const MaxPoolLayer32&) = delete;

virtual “MaxPoolLayer32 ()

{1}

int getLayerType() const override
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{
}

/// <summary>

/// Returns the index of the preceeding layer inside
/// its mnetwork.

/// </summary>

std::size_t getPreviousLayerIndex () const override

{
}

void Propagate() override;

return LAYERTYPE;

return m_prevLayer. getNetworkIndex () ;

void Backpropagate (Layer32 &fromLayer) override;

void PostBackpropagate(float fInvMinibatchSize, float
— fInvTotalSamples) override
{

}

/// <summary>

/// Returns the array of indices where the maximum for the
— weighted input value was found.

/// </summary>

const std::size_t xgetWeightedInputIndices(std:: size_t sample = 0)
— const

{

return m_weighted_input_index.data() + sample * this—>
— getNeuronCount () ;

}

void Save(std::ostream &fNum, const LayerKey &key) const;
static std::shared_ptr<MaxPoolLayer32> Load(std ::istream &fNum,
< const Network32 &network, std::size_t uiMinibatchSize
const NeuralNetwork:: ActivationFunctions :: TActivationFunction<
— float> &f, const Layer32 &prevLayer, const LayerKey &key);

protected :
/// <summary>
/// Returns the array of indices where the maximum for the
— weighted input value was found.
/// </summary>
std::size_t xgetWeightedInputIndices(std:: size_t sample = 0)

{

return m_weighted_input_index.data() + sample x this—>
— getNeuronCount () ;
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private:
std :: vector<std ::size_t> m_weighted_input_index;

}s

typedef MaxPoolLayer32 MaxPoolLayer;

}
}

#endif

B.17 File: kmaxpoollayer.cpp

#include " kinputlayer . h”
#include "kmaxpoollayer . h”
#include "kconvneuron.h”

NeuralNetwork :: Convolutional :: MaxPoolLayer32 :: MaxPoolLayer32 (const
— Network32 &network ,

std :: size_t uiPoolingWidth, std::size_t uiPoolingHeight , std:: size_t
— uiPoolingStep ,

const NeuralNetwork:: ActivationFunctions:: TActivationFunction<float> &
— f,

std :: size_t uilnputWidth, std::size_t uilnputHeight, std::size_t
— uilnputDepth ,

const Layer32 &prevLayer, std::size_t uiMinibatchSize , const LayerKey
— &key)

ConvolutionalLayer32 (network, f, prevLayer, uiMinibatchSize, key)

std:: vector<std ::shared_ptr<Filter32>> filters;
std:: vector<float> elements;

filters.resize (uilnputDepth);

for (std::size_-t i = 0; i < uilnputDepth; i++)
{

Filter32 ::depth_index_type j = i;

filters [i] = std::shared_ptr<InputFilter32 >(new InputFilter32(
— uiPoolingWidth , uiPoolingHeight ,
&j
1))

elements.resize (filters [i]—>getFilterElementsCount (), 1.0);
filters [i]—->setFilterElements (elements.data());
filters [i]—>setBias (0);

}

std :: vector<std ::size_t> arrFeatureSteps (uilnputDepth, uiPoolingStep);
init (filters.data(), arrFeatureSteps.data(), arrFeatureSteps.size (),
uilnputWidth , uilnputHeight , uilnputDepth);
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m_weighted_input_index.resize (m_weighted_input.size ());

}

void NeuralNetwork:: Convolutional :: MaxPoolLayer32:: Propagate ()
{
for (std::size_t sample_.i = 0; sample.i < m_uiMinibatchSize; sample_i
— 4+)
{

const float sprevActivations = m_prevLayer.getActivations () +
— sample_i * m_prevLayer.getNeuronCount () ;

std::size_t xweighted_input_indices = getWeightedInputIndices(
— sample_i);

#pragma omp parallel for

for (int i = 0; i < getNeuronCount(); i++)

{

ConvolutionalNeuron32 &neuron = (ConvolutionalNeuron32&)(getNeuron
= (i));
const int32_t % neuron_from._indices = neuron.getNeuronFrom () ;

float maxValue = 0.0f;
if (neuron.getConnectionsInCount () > 0)

{

maxValue = prevActivations [neuron_from_indices [0]];
weighted_input_indices[i] = neuron_from_indices [0];
}
for (int connection_in_i =

1; connection_in_i < neuron.
— getConnectionsInCount (

)
); connection_in_i++)

std::size_t neuron_from_i = neuron_from_indices|[connection_in_i
e
if (maxValue < prevActivations|[neuron_from_i])
maxValue = prevActivations [neuron_from.i];
weighted_input_indices[i] = neuron_from_i;

}
¥

neuron .setWeightedInput (maxValue, sample_i);

}
}

m_pfuncActivation—>f(m_activations.data(), m_weighted_input.data(),
— m_weighted_input.size ());

}

void NeuralNetwork:: Convolutional :: MaxPoolLayer32:: Backpropagate (Layer32
— & fromLayer)
{

if (fromLayer.getLayerType() != NeuralNetwork:: InputLayer32::
- LAYERTYPE)
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std :: memset (fromLayer. getDeltaVector (). unsafe_data(), 0, fromLayer.
— getDeltaVector().size () * sizeof(float));

for (std::size_t sample_.i = 0; sample_.i < m_uiMinibatchSize;
— sample_i++)

{

std::size_t *xweighted_input_indices = this—>
— getWeightedInputIndices (sample_i);
#pragma omp parallel for
for (int neuron_to_i = 0; neuron_to_i < (int)this—>getNeuronCount

< (); neuron_to_i++)
{

NeuralNetwork :: Convolutional :: ConvolutionalNeuron32 &neuron_to =
(NeuralNetwork :: Convolutional :: ConvolutionalNeuron32&)this —
< getNeuron(neuron_to_i);

const int32_t sneuron_from_indices = neuron_to.getNeuronFrom () ;
std:: size_t from_sample_start = sample_i * fromLayer.

— getNeuronCount () ;
for (std::size_t connection_index = 0; connection_index <

< neuron_to.getConnectionsInCount (); connection_index++)

{

std::size_t neuron_from_i = neuron_from_indices |
— connection_index |;
if (weighted_input_indices[neuron_to_.i] = neuron_from_i)

fromLayer. getDeltaVector () .accumulate (from_sample_start +
< mneuron_from_i, neuron_to.getDelta(sample_i));

}
}
}
}

m_buffer.resize (fromLayer.getWeightedInputVector () .size ());
fromLayer. getActivationFunction () .df (m_buffer.data(), fromLayer.
— getWeightedInputValues (), m_buffer.size());
vsMul ((int ) m_buffer.size (), fromLayer.getDeltaVector().data(),
— m_buffer.data(), fromLayer.getDeltaVector().unsafe_data());
}

void NeuralNetwork:: Convolutional :: MaxPoolLayer32:: Save(std :: ostream &
< fNum, const LayerKey & key) const

{

std :: uint64_t u_-output;

u_output = KUtilities :: UInt64:: getLittleEndian (this—>getFeature (0).
— getFilter ()—>getWidth () );
fNum. write (( char*)&u_output, sizeof (u_output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— MaxPoolLayer32:: Save(std :: ostream .&_fNum, .const .LayerKey .&_key
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"Error_writing_pooling _width.”);

u_output = KUtilities :: UInt64:: getLittleEndian (this—>getFeature(0).
— getFilter ()—>getHeight () );
fNum. write ((char*)&u_output, sizeof (u-output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— MaxPoolLayer32:: Save(std :: ostream & fNum, .const _LayerKey &_key
o )]
"Error.writing._pooling _height.”);

u_output = KUtilities :: UInt64:: getLittleEndian (this—>getFeature (0).
— getStep());
fNum. write (( charx)&u_output, sizeof(u_output));
if (!fNum.good())
throw std::runtime_error (" [NeuralNetwork :: Convolutional ::
— MaxPoolLayer32:: Save(std :: ostream .&_fNum, .const _LayerKey .&_key
— )]
"Error.writing._pooling._step.”);

u_output = KUtilities :: UInt64:: getLittleEndian (this—>getInputWidth () );
fNum. write (( char*)&u_output, sizeof(u_output));
if (!MfNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— MaxPoolLayer32:: Save(std :: ostream & fNum, _const _LayerKey .&_key
— )]
"Error_writing_input _width.”);

u_output = KUtilities :: UInt64:: getLittleEndian (this—>getInputHeight ())
=
fNum. write (( char *)&u_output, sizeof(u_output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— MaxPoolLayer32:: Save(std :: ostream & fNum, _.const _LayerKey .&_key
[N ) ] w??
"Error.writing._input_height.”);

u_output = KUtilities:: UInt64:: getLittleEndian (this—>getInputDepth());
fNum. write ((charx)&u_output, sizeof(u_output));
if (!MfNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— MaxPoolLayer32:: Save(std :: ostream .&_fNum, const _LayerKey -&_key
— )]
"Error_writing_input._depth.”);

}

std :: shared_ptr<NeuralNetwork :: Convolutional :: MaxPoolLayer32>
NeuralNetwork :: Convolutional :: MaxPoolLayer32 :: Load (std :: istream & fNum,
< const Network32 &network, std::size_t uiMinibatchSize
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const NeuralNetwork:: ActivationFunctions :: IActivationFunction<float> &
— f, const Layer32 &prevLayer, const LayerKey & key)

std::size_t uiPoolingWidth, uiPoolingHeight , uiPoolingStep ,
uilnputWidth , uilnputHeight , uilnputDepth;

char buffer [8];

fNum.read (buffer , sizeof(std::uint64_t));
if (!'fNum.good () || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— MaxPoolLayer32:: Load (istream &fNum, .const .Network32 _&network , -
— size_t.uiMinibatchSize ,.const_NeuralNetwork ::
— ActivationFunctions :: IActivationFunction<float>_&f, _const.
— Layer32_&prevLayer ,_const._LayerKey &key) |:.”
"Error.reading._pooling .width.”);
uiPoolingWidth = KUtilities :: UInt64 :: ToEndian(buffer , true);

fNum.read (buffer , sizeof(std::uint64_t));
if (!MfNum.good () || fNum.gcount () != sizeof(std::uint64_t))
throw std::runtime_error (" [NeuralNetwork :: Convolutional ::
— MaxPoolLayer32:: Load (istream &fNum, .const .Network32 _&network , -
— size_t._.uiMinibatchSize , _.const_NeuralNetwork ::
— ActivationFunctions:: IActivationFunction<float >_&f , _const .
— Layer32.&prevLayer ,.const._LayerKey . &key) |:.”
"Error.reading._pooling _height.”);
uiPoolingHeight = KUtilities :: Ulnt64 :: ToEndian (buffer , true);

fNum.read (buffer , sizeof(std::uint64_t));
it ('fNum.good() || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (" [NeuralNetwork :: Convolutional ::
— MaxPoolLayer32:: Load (istream &fNum, .const .Network32 &network , -
— size_t_.uiMinibatchSize , _.const_NeuralNetwork ::
«— ActivationFunctions:: IActivationFunction<float >_&f , _const .
— Layer32.&prevLayer ,.const._LayerKey . &key) |:.”
"Error.reading._pooling._step.”);
uiPoolingStep = KUtilities :: UInt64 :: ToEndian( buffer , true);

fNum.read (buffer , sizeof(std::uint64_t));
if (!MNum.good () || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (" [NeuralNetwork :: Convolutional ::
— MaxPoolLayer32:: Load (istream &fNum, .const _Network32 _&network , -
— size_t.uiMinibatchSize ,.const_NeuralNetwork ::
— ActivationFunctions :: IActivationFunction<float>_&f, _const.
— Layer32._&prevLayer ,_const._LayerKey &key) |:.”
"Error.reading._input.width.”);
uilnputWidth = KUtilities :: UInt64 :: ToEndian( buffer , true);

fNum.read (buffer , sizeof(std::uint64_t));
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if (!fNum.good() || fNum.gcount() != sizeof(std:: ui

throw std::runtime_error (7 [NeuralNetwork :: Convolutional ::
— MaxPoolLayer32:: Load (istream &fNum, .const .Network32 _&network , _

— size_t_uiMinibatchSize ,_const_NeuralNetwork

(_)

— Layer32_&prevLayer,_const._LayerKey.&key) |: .
"Error_reading._input_height.”);

uilnputHeight = KUtilities :: Ulnt64 :: ToEndian ( buffer , true);

fNum.read (buffer , sizeof(std::uint64_t));

if (!fNum.good ()
throw
C%

— size_t._.uiMinibatchSize ,.const._NeuralNetwork

(%

— Layer32_&prevLayer,_const._LayerKey.&key) |: .
"Error_reading._input._depth.”);

uilnputDepth = KUtilities :: UInt64 :: ToEndian ( buffer , true);

return std::shared_ptr<MaxPoolLayer32>(
new Convolutional :: MaxPoolLayer32(network ,
uiPoolingWidth , uiPoolingHeight , uiPoolingStep ,

£,

uilnputWidth , uilnputHeight , uilnputDepth ,
prevLayer , uiMinibatchSize, key));

ActivationFunctions :: TActivationFunction<float >_&f, _const .

|| fNum.gcount () != sizeof(std::uint64_t))
std :: runtime_error (7 [ NeuralNetwork :: Convolutional ::
MaxPoolLayer32 :: Load (istream &fNum, .const .Network32 &network , _

ActivationFunctions :: TActivationFunction<float >_&f , _const.

nt64._t))

b2

b2

B.18 File: kmergelayer.h

#ifndef KFFANNMERGELAYER_H
#define KFFANNMERGELAYER_H

#include
#include
#include
#include

#include
#include
#include
#include

<memory>

<cstring>
<istream>
<ostream>

”knnkeys.h”
"klayer .h”
”"kfuncact .h”
"ktypeutils.h”

namespace NeuralNetwork

{

class Network32;

/// <summary>
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/// Encapsulates the functionality of a merge layer.

/// A merge layer takes inputs from all the layers connected to itself
/// that need to be merged and then replicates the inputs as outputs
/// as if all merged layers were actually one.

/// </summary>

class MergeLayer32 : public TrainableLayer32

{

public:
static const int LAYERTYPE = 410;

/// <summary>
/// Creates a new merge layer.
/// </summary>
MergeLayer32 (const Network32 &network,
std:: size_t numlnputs, const std::shared_ptr<Layer32> xarrLayers,
— std::size_t numLayers,
std::size_t uiMinibatchSize , const LayerKey &key)
TrainableLayer32 (network, numlInputs, NeuralNetwork::
< ActivationFunctions:: Identity32 (), uiMinibatchSize, key),
m_bTrainable (true)

m_weights. resize (numlInputs) ;
m_neurons . resize (numInputs) ;
for (std::size_t i = 0; i < numlInputs; i++)
m_neurons [i] = std::shared_ptr<Neuron32>(
new Neuron32(m_activations, m_biases, m_weighted_input,
— m_deltas ,
m_weights, 1,
i, numlInputs, uiMinibatchSize , m_NeuronKey)

)

m_arrLayers. assign (arrLayers, arrLayers 4+ numLayers);

int getLayerType() const override

{
}

/// <summary>

/// Returns index of the first previous layer.
/// </summary>

std::size_t getPreviousLayerIndex () const override

{
}

/// <summary>
/// Returns the number of layers merged into this one.

return LAYER.TYPE;

return m_arrLayers[0]—>getNetworkIndex () ;
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/// </summary>
std::size_t getPreviousLayerCount () const

{

return m_arrLayers. size () ;

}

const Layer32& getPreviousLayer(std::size_t index) const

{

return sm_arrLayers[index |;

}

/// <summary>

/// Returns whether this layer’s weights and biases can be changed
— through training.

/// </summary>

bool IsTrainable() const override

{

return m_bTrainable;

}

/// <summary>

/// Sets whether this layer’s weights and biases can be changed
— through training.

/// </summary>

void setTrainable(bool value)

{

m_bTrainable = value;

}

void Propagate() override;

void Backpropagate (NeuralNetwork :: Layer32 &fromLayer) override;
void PostBackpropagate(float fInvMinibatchSize, float
— fInvTotalSamples) override;

void Save(std::ostream &fNum, const LayerKey &key) const;
static std::shared_ptr<MergeLayer32> Load(std::istream &fNum, const
— Network32 &network ,
std:: size_t numlnputs, const std::shared_ptr<Layer32> xarrLayers,
— std::size_t numLayers,
std::size_t uiMinibatchSize, const LayerKey &key);

protected:
void Load(std::istream &fNum, const LayerKey &key);

private:
bool m_bTrainable;
std :: vector<std ::shared_ptr<Layer32>> m_arrLayers;
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typedef MergeLayer32 MergeLayer;

}

#endif

B.19 File: kmergelayer.cpp

#include "kmergelayer . h”
#include "kinputlayer . h”
#include "ktypeutils. h”

#include 7“mkl.h”

void NeuralNetwork :: MergeLayer32:: Propagate ()

{

std::size_t uiActivationOffset = 0;

for (std::size_t prev_layer_i = 0; prev_layer_.i <
— getPreviousLayerCount (); prev_layer_i++)

{

const Layer32 &prevLayer = getPreviousLayer(prev_layer_i);
#pragma omp parallel for

for (int sample_.i = 0; sample.i < (int)m_uiMinibatchSize; sample_i
— ++)
vsMul ((int )prevLayer.getNeuronCount (), m_weights.data() +
< uiActivationOffset , prevLayer.getActivations (sample_i),

m_activations.data() + sample_i * this—>getNeuronCount () +
— uiActivationOffset);

uiActivationOffset += prevLayer.getNeuronCount () ;

}

#pragma omp parallel for
for (int sample_.i = 0; sample_.i < (int)m_uiMinibatchSize; sample_i++)

{
cblas_saxpy ((int ) this—>getNeuronCount () ,
1.0, m_biases.data(), 1,

m_activations.data() + sample_i * this—>getNeuronCount (), 1);

}
}

void NeuralNetwork:: MergeLayer32:: Backpropagate (NeuralNetwork :: Layer32 &
< fromLayer)

{
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std :: size_t uiActivationOffset = 0;

for (std::size_t prev_layer_i = 0; prev_layer_.i <
— getPreviousLayerCount (); prev_layer_i++)

{

Layer32 &prevLayer = sm_arrLayers|[prev_layer_i|;

if (prevLayer.getLayerType() != NeuralNetwork:: InputLayer32::
— LAYER.TYPE)

{

#pragma omp parallel for
for (int sample_.i = 0; sample_.i < (int)m_uiMinibatchSize; sample_i
— ++)
vsMul ((int)prevLayer.getNeuronCount (), m_weights.data() +
— uiActivationOffset , this—>getDeltas(sample_i) +
— uiActivationOffset ,
prevLayer.getDeltaVector () .unsafe_data() + sample_i x
— prevLayer.getNeuronCount () );

}

uiActivationOffset += prevLayer.getNeuronCount () ;

if (this—>IsTrainable())

for (std::size_t sample_.i = 0; sample_.i < m_uiMinibatchSize;
< sample_i++)
{

std::size_t uiActivationOffset = 0;
for (std::size_t prev_layer_i = 0; prev_layer_.i <
— getPreviousLayerCount (); prev_layer_i++)

{

Layer32 &prevLayer = sm_arrLayers|[prev_layer_i];
#pragma omp parallel for
for (int neuron_from_i = 0; neuron_from.i < (int)prevLayer.

— getNeuronCount () ; neuron_from_i++)
{
Neuron32 &neuron_to = this—>getNeuron(neuron_from_i +
— uiActivationOffset);

neuron_to.getDeltaWeights () [0] +=
(neuron_to.getDelta(sample_i) % prevLayer.getActivations (
< sample_i)[neuron_from_i]);
neuron_to.DeltaBias += neuron_to.getDelta(sample_i);

}

uiActivationOffset += prevLayer.getNeuronCount () ;
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void NeuralNetwork :: MergeLayer32:: PostBackpropagate (float
— fInvMinibatchSize, float fInvTotalSamples)
{
if (this—>IsTrainable())

{

#pragma omp parallel for
for (int j = 0; j < (int)this—>getNeuronCount(); j++)
{

Neuron32 &neuron = this—>getNeuron(j);

neuron . UpdateWeights (fInvMinibatchSize , fInvTotalSamples);
neuron. UpdateBias (fInvMinibatchSize);

neuron . ScaleDeltaWeights () ;
neuron. ScaleDeltaBias () ;

}
}

}

void NeuralNetwork :: MergeLayer32:: Save(std :: ostream & fNum, const

{

< LayerKey & key) const
std :: uint64_t u_output;

u_output = KUtilities :: UInt64:: getLittleEndian ((this—>IsTrainable() ?
— 1 :0));
fNum. write (( char*)&u_output, sizeof(u_output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: MergeLayer32:: Save(std ::
— ostream &fNum, _const _.LayerKey &key) ]: .7
"Error_writing _trainable_flag.”);

u_output = KUtilities:: UInt64 :: getLittleEndian (this—>getWeightsCount ()
= )
fNum. write (( char)&u_output, sizeof (u_output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: MergeLayer32:: Save(std ::
— ostream _&fNum, _const _LayerKey _&key) |: .7
"Error_writing .number_of_weights.”);

)

fNum. write ((char)m_weights.data (), sizeof(float) * m_weights.size());
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: MergelLayer32:: Save(std ::
— ostream .&fNum, .const _LayerKey .&key) |: .7
"Error.writing._all _weights.”);

fNum. write ((char«)m_biases.data(), sizeof(float) * m_biases.size());
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: MergeLayer32:: Save(std ::
— ostream &fNum, _const .LayerKey &key) ]: .7
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"Error_writing_all _biases.”);

}

void NeuralNetwork:: MergeLayer32:: Load(std ::istream &fNum, const
— LayerKey &key)
{

char buffer [8];

fNum.read (buffer , sizeof(std::uint64_t));
if (!fNum.good() || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: MergelLayer32 :: Load (std ::
— istream .&fNum, .const._LayerKey . &key) |: .7
"Error._reading._trainable_flag.”);
this—>setTrainable (KUtilities :: Ulnt64 :: ToEndian (buffer , true) != 0);

fNum.read (buffer , sizeof(std::uint64-t));
if (!MfNum.good() || fNum.gcount() != sizeof(std::uint64_t))
throw std::runtime_error (” |[NeuralNetwork :: MergeLayer32:: Load (std ::
— istream &fNum, _const _LayerKey _&key)]:.”
"Error.reading .number_of_weights.”);
std:: size_t uiNumWeights = KUtilities :: UInt64 :: ToEndian (buffer , true);
if (uiNumWeights != this—>getWeightsCount ())
throw std::runtime_error (7 [NeuralNetwork :: MergeLayer32 :: Load (std ::
— istream &fNum, _const _LayerKey _&key)]: .7
"Number_of_weights_in_file_is_.different_than_weights_in_layer.”);

fNum.read ((char*)m_weights. unsafe_data (), sizeof(float) * m_weights.

— size());
if ('fNum.good() || fNum.gcount() != sizeof(float) = m_weights.size())
throw std::runtime_error (7 [NeuralNetwork :: MergeLayer32 :: Load (std ::
— istream .&fNum, _const _.LayerKey _&key)]:.”

"Error_reading._all _weights.”);

fNum.read ((char*)m_biases.unsafe_data (), sizeof(float) % m_biases.size
= )
if (!fNum.good() || fNum.gcount() != sizeof(float) * m_biases.size())
throw std::runtime_error (7 [NeuralNetwork :: MergeLayer32:: Load(std ::
— istream .&fNum, _const_LayerKey _&key) |: .7

"Error.reading._all_biases.”);

}

std :: shared_ptr<NeuralNetwork :: MergeLayer32> NeuralNetwork :: MergeLayer32
< ::Load(std::istream &Num,
const Network32 &network, std::size_t numlnputs,
const std::shared_ptr<Layer32>x arrLayers, std::size_t numLayers,
std::size_t uiMinibatchSize, const LayerKey & key)

std :: shared_ptr<MergeLayer32> retval = std::shared_ptr<MergeLayer32>(
new MergeLayer32 (network, numlInputs, arrLayers, numLayers,
< uiMinibatchSize , key));
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retval —Load (fNum, key);

return retval;

}

B.20 File: knetwork.h

#ifndef KFFANNNETWORK_H
#define KFFANNNETWORK_H

#include <memory>
#include <mutex>
#include <stdexcept>
#include <vector>

#include 7 klayer.h”
#include " kinputlayer . h”
#include " kfclayer. . h”
#include "kconvlayer. h”
#include "kmaxpoollayer . h”
#include "kmergelayer . h”
#include 7 ktypeutils.h”

namespace NeuralNetwork

{

class Network32

{

public:
static const int VERSION = 1;

Network32(std :: size_t uiMinibatchSize = 1)
m_uiMinibatchSize (uiMinibatchSize) ,
m_bLocked ( false) ,
m_iNumLocks (0)

if (uiMinibatchSize <= 0)
throw std::out_of_range (" [NeuralNetwork :: Network32:: Network32 (
— size_t)].uiMinibatchSize_must_be_greater_than.zero.”);

}

Network32(const Network32&) = delete;
Network32& operator=(const Network32&) = delete;

std::size_t getLayerCount() const
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{

return m_Layers. size () ;

}

const std::vector<std::shared_ptr<Layer32>> getLayers() const

{

return m_Layers;

}

InputLayer32& getInputLayer () const

{

return (InputLayer32&)+m_Layers. front ();

}

Layer32& getOutputLayer () const

{

return sxm_Layers.back () ;

}

std::size_t getMinibatchSize () const

{

return m_uiMinibatchSize;

}

/// <summary>
/// Initializes a new maxpool layer using another convolutional
— layer as input layer.
/// </summary>
Convolutional :: MaxPoolLayer32& CreateMaxPoolLayer (
std::size_t uiPoolingWidth, std::size_t uiPoolingHeight , std::
< size_t uiPoolingStep ,
const NeuralNetwork:: ActivationFunctions :: [ActivationFunction<
— float> &f)
{

return CreateMaxPoolLayer (uiPoolingWidth , uiPoolingHeight ,
— uiPoolingStep, f, getLayerCount() — 1);
}

/// <summary>
/// Initializes a new maxpool layer using another convolutional
— layer as input layer.
/// </summary>
Convolutional :: MaxPoolLayer32& CreateMaxPoolLayer (
std::size_t uiPoolingWidth, std::size_t uiPoolingHeight , std::
— size_t uiPoolingStep ,
const NeuralNetwork:: ActivationFunctions :: TActivationFunction<
— float> &f, std::size_t prevLayerIndex);

/// <summary>
/// Initializes a new maxpool layer.
/// </summary>
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Convolutional :: MaxPoolLayer32& CreateMaxPoolLayer (
std::size_t uiPoolingWidth, std::size_t uiPoolingHeight , std::
— size_t uiPoolingStep ,
const NeuralNetwork:: ActivationFunctions ::IActivationFunction<
— float > &f,
std::size_t uilnputWidth, std::size_t uilnputHeight,6 std::size_t
— uilnputDepth)
{
return CreateMaxPoolLayer (uiPoolingWidth , uiPoolingHeight ,
< uiPoolingStep ,
f,
uilnputWidth , uilnputHeight , uilnputDepth, getLayerCount() — 1);

}

/// <summary>
/// Initializes a new maxpool layer.
/// </summary>
Convolutional :: MaxPoolLayer32& CreateMaxPoolLayer (
std::size_t uiPoolingWidth, std::size_t uiPoolingHeight , std::
— size_t uiPoolingStep ,
const NeuralNetwork:: ActivationFunctions :: [ActivationFunction<
— float > &f,
std:: size_t uilnputWidth, std::size_t uilnputHeight, std::size_t
< uilnputDepth, std::size_t prevLayerIndex);

/// <summary>
/// Initializes a new convolutional layer using another
— convolutional layer as input layer.
/// </summary>
Convolutional :: ConvolutionalLayer32& CreateConvolutionalLayer (
const std::shared_ptr<Convolutional:: Filter32> xarrFilters , const
< std::size_t xarrFeatureSteps, std::size_t uiNumFeatures,
const NeuralNetwork:: ActivationFunctions :: [ActivationFunction<
— float> &f)
{
return CreateConvolutionalLayer (arrFilters , arrFeatureSteps,
< uiNumFeatures, f, getLayerCount() — 1);

}

/// <summary>
/// Initializes a new convolutional layer using another
— convolutional layer as input layer.
/// </summary>
Convolutional :: ConvolutionalLayer32& CreateConvolutionalLayer (
const std::shared_ptr<Convolutional:: Filter32> xarrFilters , const
— std::size_t xarrFeatureSteps, std::size_t uiNumFeatures,
const NeuralNetwork:: ActivationFunctions ::IActivationFunction<
— float > &f,
std::size_t prevLayerIndex);

/// <summary>
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/// Initializes a new convolutional layer.
/// </summary>
Convolutional :: ConvolutionalLayer32& CreateConvolutionalLayer (
const std::shared_ptr<Convolutional:: Filter32> xarrFilters , const
< std::size_t xarrFeatureSteps, std::size_t uiNumFeatures,
const NeuralNetwork:: ActivationFunctions :: [ActivationFunction<
— float > &f,
std:: size_t uilnputWidth, std::size_t uilnputHeight , std::size_t
— uilnputDepth)
{
return CreateConvolutionalLayer(arrFilters , arrFeatureSteps,
— uiNumPFeatures,
f’
uilnputWidth , uilnputHeight , uilnputDepth ,
getLayerCount () — 1);

}

/// <summary>
/// Initializes a new convolutional layer.
/// </summary>
Convolutional :: ConvolutionalLayer32& CreateConvolutionalLayer (
const std::shared_ptr<Convolutional:: Filter32> xarrFilters , const
— std::size_t xarrFeatureSteps, std::size_t uiNumFeatures,
const NeuralNetwork:: ActivationFunctions :: TActivationFunction<
— float > &f,
std::size_t uilnputWidth, std::size_t uilnputHeight, std::size_t
— uilnputDepth ,
std::size_t prevLayerIndex);

FullyConnectedLayer32& CreateFullyConnectedLayer (std:: size_t
— numNeurons,
const NeuralNetwork:: ActivationFunctions:: IActivationFunction<
— float> &f)
{
return CreateFullyConnectedLayer (numNeurons, f, getLayerCount () —
— 1);

}

FullyConnectedLayer32& CreateFullyConnectedLayer(std:: size_t
— numNeurons,
const NeuralNetwork:: ActivationFunctions :: [ActivationFunction<
— float > &f,
std:: size_t prevLayerIndex);

InputLayer32& CreatelnputLayer(std::size_t numlInputs);

/// <summary>

/// Creates a new MergeLayer32 and adds it to this network.

/// </summary>

MergeLayer32& CreateMergeLayer (std:: size_t xarrPrevLayerIndices, std
< ::size_t size);
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/// <summary>
/// Creates a new MergeLayer32 and adds it to this network.
/// </summary>
MergeLayer32& CreateMergeLayer (std :: vector<std ::size_t >
< arrPrevLayerIndices)
{

return CreateMergeLayer (arrPrevLayerIndices.data(),
— arrPrevLayerIndices.size ());

/// <summary>
/// Performs a per—layer forward propagation through the network.
/// </summary>
void PropagatePerLayer ()
{
for (int i = 0; i < (int)m-_Layers.size(); i++)
m_Layers[i]—>Propagate () ;
}

void Save(std::ostream &Num, const NetworkKey &key) const;
void Load(std::istream &fNum, const NetworkKey &key) ;

protected :
/// <summary>
/// Adds a new layer to this network.
/// </summary>
virtual void addLayer(std::shared_ptr<Layer32> layer)

if (!layer)
throw std::invalid_argument (" layer_cannot_be_null”);

layer —>setNetworkIndex (m_Layers.size (), m_LayerKey) ;
m_Layers. push_back (layer);

}

LayerKey m_LayerKey;

private:
void saveLayer(std::ostream &fNum, const InputLayer32 &layer) const;
void saveLayer (std::ostream &fNum, const FullyConnectedLayer32 &
< layer) const;
void saveLayer (std::ostream &fNum, const MergeLayer32 &layer) const;
void saveConvolutionalLayer (std::ostream &fNum, const NeuralNetwork
— :: Convolutional :: ConvolutionalLayer32 &layer) const;
void saveMaxpoolLayer (std ::ostream &fNum, const NeuralNetwork ::
< Convolutional :: MaxPoolLayer32 &layer) const;
std :: shared_ptr<NeuralNetwork :: ActivationFunctions ::
— TActivationFunction<float>> loadActivationFunction (std ::
— istream & fNum);
void loadInputLayer (std::istream & fNum);
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void loadFullyConnectedLayer (std::istream & fNum);
void loadConvolutionalLayer (std::istream & fNum);
void loadMaxpoolLayer (std ::istream & fNum);

void loadMergeLayer(std::istream & fNum);

std :: vector<std :: shared_ptr<Layer32>> m_Layers;
std::size_t m_uiMinibatchSize;

int m_iNumLocks;
bool m_bLocked;

}

typedef Network32 Network;

}

#endif

B.21 File: knetwork.cpp

#include <cstdint>
#include 7 knetwork.h”

NeuralNetwork :: Convolutional : : MaxPoolLayer32 & NeuralNetwork :: Network32
— :: CreateMaxPoolLayer (
std :: size_t uiPoolingWidth, std::size_t uiPoolingHeight , std::size_t
< uiPoolingStep ,
const NeuralNetwork:: ActivationFunctions:: [ActivationFunction<float> &
— f, std::size_t prevLayerIndex)

std :: shared_ptr<Layer32> retval;

if (m_Layers.empty())
throw std::runtime_error (" Only_Input_layer_allowed_as_first_layer_in
— othe_network.”);
if (prevLayerIndex >= getLayerCount())
throw std::out_of_range (" prevLhayerindex_outside_of_range_of_layers.”

=)
Convolutional :: ConvolutionalLayer32 sprevLayer = nullptr;
try
{
prevLayer = dynamic_cast<Convolutional:: ConvolutionalLayer32x*>(

— m_Layers|[prevLayerIndex]. get ());

t
catch (...)
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if (!prevLayer)
throw std::runtime_error (" Previous_layer_is._not_a.convolutional.
— layer.”);

retval = std::shared_ptr<Layer32>(
new Convolutional :: MaxPoolLayer32(xthis , uiPoolingWidth ,
— uiPoolingHeight , uiPoolingStep, f,
xprevLayer , m_uiMinibatchSize , m_LayerKey)

)
addLayer(retval);

return (Convolutional :: MaxPoolLayer32&)*retval;

}

NeuralNetwork :: Convolutional : : MaxPoolLayer32 & NeuralNetwork :: Network32
— ::CreateMaxPoolLayer (std :: size_t uiPoolingWidth, std::size_t
— uiPoolingHeight , std::size_t uiPoolingStep, const NeuralNetwork::
— ActivationFunctions :: IActivationFunction<float> & f, std::size_t
— uilnputWidth, std::size_t uilnputHeight, std::size_t uilnputDepth,
— std::size_t prevLayerIndex)

std :: shared_ptr<Layer32> retval;

if (m_Layers.empty())
throw std::runtime_error ("Only_Input_layer_allowed_as_first_layer_in
— _the_network.”);
if (prevLayerIndex >= getLayerCount())
throw std::out_of_range (" prevLayerlndex_outside_of_range_of_layers.”
= )

retval = std::shared_ptr<Layer32>(
new Convolutional :: MaxPoolLayer32(xthis , uiPoolingWidth ,
— uiPoolingHeight , uiPoolingStep, f,
uilnputWidth , uilnputHeight , uilnputDepth
xm_Layers|[prevLayerIndex], m_uiMinibatchSize , m_LayerKey)

)5
addLayer(retval);

return (Convolutional :: MaxPoolLayer32&)*retval ;

}

NeuralNetwork :: Convolutional :: ConvolutionalLayer32 & NeuralNetwork::
— Network32:: CreateConvolutionalLayer (
const std::shared_ptr<Convolutional :: Filter32 >x arrFilters ,
const std::size_t xarrFeatureSteps, std::size_t uiNumFeatures,
const NeuralNetwork:: ActivationFunctions :: TActivationFunction<float> &
— f,
std::size_t prevLayerIndex)
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std :: shared_ptr<Layer32> retval;

if (m_Layers.empty())
throw std::runtime_error ("Only_Input_layer_allowed_as_first_layer_in
— _the_network.”);
if (prevLayerIndex >= getLayerCount())
throw std::out_of_range(”prevLayerIndex_outside_of_range_of_layers.”

= )
Convolutional :: ConvolutionalLayer32 sprevLayer = nullptr;
try
{
prevLayer = dynamic_cast<Convolutional:: ConvolutionalLayer32x>(

< m_Layers|[prevLayerIndex]. get ());

}
catch (...)
{
}
if (!prevLayer)
throw std::runtime_error (" Previous_layer_is_not_a_convolutional._
— layer.”);

retval = std::shared_ptr<Layer32>(
new Convolutional:: ConvolutionalLayer32 (xthis, arrFilters ,
< arrFeatureSteps, uiNumFeatures, f,
xprevLayer , m_uiMinibatchSize , m_LayerKey)

)
addLayer(retval);

return (Convolutional :: ConvolutionalLayer32&)*retval;

}

NeuralNetwork :: Convolutional :: ConvolutionalLayer32 & NeuralNetwork::
< Network32:: CreateConvolutionalLayer (

const std::shared_ptr<Convolutional:: Filter32 >x arrFilters ,

const std::size_t xarrFeatureSteps, std::size_t uiNumFeatures,

const NeuralNetwork:: ActivationFunctions :: TActivationFunction<float> &
— f,

std :: size_t uilnputWidth, std::size_t uilnputHeight , std::size_t
— uilnputDepth ,

std::size_t prevLayerIndex)

std :: shared_ptr<Layer32> retval;

if (m_Layers.empty())
throw std::runtime_error (" Only_Input_layer_allowed_as_first_layer_in
— _the_network.”);
if (prevLayerIndex >= getLayerCount())
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throw std::out_of_range (" prevlLayerindex_outside_of_range_of_layers.”
= )

retval = std::shared_ptr<Layer32>(
new Convolutional:: ConvolutionalLayer32 (xthis, arrFilters ,
— arrFeatureSteps, uiNumFeatures, f,
uilnputWidth , uilnputHeight , uilnputDepth ,
xm_Layers|[prevLayerIndex], m_uiMinibatchSize, m_LayerKey)

)
addLayer(retval);

return (Convolutional :: ConvolutionalLayer32&)*retval;

}

NeuralNetwork :: FullyConnectedLayer32 & NeuralNetwork :: Network32::
— CreateFullyConnectedLayer (std :: size_t numNeurons, const
< NeuralNetwork :: ActivationFunctions :: TActivationFunction<float> & f
< , std::size_t prevLayerIndex)

std :: shared_ptr<Layer32> retval;

if (numNeurons <= 0)
throw std::invalid_argument (" Number_of_neurons_must_be_positive.”);
if (m_Layers.empty())
throw std::runtime_error ("Only_Input_layer_allowed_as_first_layer_in
— _the_network.”);
if (prevLayerIndex >= getLayerCount())
throw std::out_of_range(”prevLayerIndex_outside_of_range_of_layers.”
= )

retval = std::shared_ptr<Layer32>(
new FullyConnectedLayer32(xthis , numNeurons, f,
xm_Layers|[prevLayerIndex], m_uiMinibatchSize, m_LayerKey)

)
addLayer(retval);

return (FullyConnectedLayer32&)xretval;

}

NeuralNetwork :: InputLayer32 & NeuralNetwork :: Network32:: CreatelnputLayer

{

— (std::size_t numInputs)
std :: shared_ptr<Layer32> retval;

if (numlInputs <= 0)
throw std::invalid_argument (" Number_of_inputs_must_be_positive.”);
if (!m_Layers.empty())
throw std::runtime_error (" Input._layer_only_allowed_as_first_layer._in
— othe_network.”);
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retval = std::shared_ptr<Layer32>(
new InputLayer32(xthis, numlInputs, m_uiMinibatchSize, m_LayerKey)

)5

addLayer (retval);

return (InputLayer32&)xretval;

}

NeuralNetwork :: MergeLayer32 & NeuralNetwork :: Network32:: CreateMergeLayer
— (std::size_t xarrPrevLayerIndices, std::size_t size)
{

std :: shared_ptr<Layer32> retval;

if (size <= 0)
throw std::invalid_argument (" Number_of_previous._layers_must_be._
— positive.”);
if (m_Layers.empty())
throw std::runtime_error (" Only_Input_layer_allowed_as_first_layer_in
— _the_network.”);

std ::size_t uiNumlInputs = 0;
std :: vector<std ::shared_ptr<Layer32>> arrLayers(size);
for (std::size_t i = 0; i < size; i++)
{
if (arrPrevLayerIndices[i] >= getLayerCount())
throw std::out_of_range (" prevlLayerIndex_outside_of_range_of_layers
= )
arrLayers[i] = m_Layers[arrPrevLayerIndices[i]];
uiNumlInputs += arrLayers [i]—>getNeuronCount () ;

}

retval = std::shared_ptr<Layer32>(
new MergeLayer32 (xthis, uiNumlnputs, arrLayers.data(), arrLayers.
< size (), m_uiMinibatchSize , m_LayerKey)
)

addLayer(retval);

return (MergeLayer32&)*xretval;

}

void NeuralNetwork :: Network32::saveLayer (std :: ostream & fNum, const

{

— InputLayer32 & layer) const

std::int32_t s_output;
std :: uint64_t u_-output;

s_output = KUtilities:: Int32(layer.getLayerType());
fNum. write ((char)&s_output, sizeof(s_output));
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if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32::savelLayer (
— ostream &fNum, _const .InputLayer32 &layer)]:.”
"Error.owriting _layer_type.”);

u_output = KUtilities :: UInt64:: getLittleEndian (layer.getNeuronCount () )
=
fNum. write (( charx)&u_output, sizeof(u_output));
if (!MNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32::saveLayer(
— ostream .&fNum, _const _InputLayer32 _&layer)]:.”
"Error_writing_input._size.”);

}

void NeuralNetwork :: Network32:: saveLayer(std :: ostream &fNum, const

{

— FullyConnectedLayer32 &layer) const

std::int32_t s_output;
std::uint64_t u_output;

s_output = KUtilities::Int32:: getLittleEndian (layer.getLayerType());
fNum. write ((char*)&s_output, sizeof(s_output));
if (!MfNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32::saveLayer(
— ostream &fNum, _const _.FullyConnectedLayer32 &layer)]:.”
"Error.writing._layer_type.”);

u_output = KUtilities :: UInt64:: getLittleEndian (layer.getNeuronCount () )
3
fNum. write (( char*)&u_output, sizeof (u_output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32::savelLayer (
— ostream _&fNum, .const._.FullyConnectedLayer32 . &layer)]:.”
"Error.writing .neuron.count.”);

u_output = KUtilities:: UInt64:: getLittleEndian (layer.
— getPreviousLayerIndex ());
fNum. write (( char*)&u_output, sizeof(u_output));
if (!MfNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32::saveLayer (
— ostream &fNum, _const _.FullyConnectedLayer32 &layer)]:.”
"Error_writing._previous.layer_index.”);

s_output = KUtilities:: Int32:: getLittleEndian (layer.
— getActivationFunction ().getID());
fNum. write ((char*)&s_output, sizeof(s_output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32::savelLayer(
— ostream .&fNum, .const _FullyConnectedLayer32 &layer)]:.”
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"Error_writing_activation._function_ID.”);
layer.getActivationFunction () .Save (fNum, { });

layer.Save(fNum, { });

}

void NeuralNetwork :: Network32::saveLayer (std:: ostream & fNum, const

{

< MergeLayer32 & layer) const

std::int32_t s_output;
std :: uint64_t u_output;

s_output = KUtilities::Int32:: getLittleEndian (layer.getLayerType());
fNum. write ((char*)&s_output, sizeof(s_output));
if (! fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32::savelLayer(
— ostream .&fNum, .const _MergeLayer32 &layer)|:.”
"Error_writing._layer _type.”);

u_output = KUtilities:: UInt64:: getLittleEndian (layer.getNeuronCount ())
—
fNum. write (( char*)&u_output, sizeof(u_output));
if (!MfNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32::saveLayer(
— ostream &fNum, _const _MergeLayer32 &layer)]:.”
"Error.writing._neuron.count.”);

u_output = KUtilities :: UInt64:: getLittleEndian (layer.
< getPreviousLayerCount () );
fNum. write (( char *)&u_output, sizeof(u_output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32::savelLayer(
— ostream &fNum, _const .MergeLayer32 &layer ) ]:.”
"Error.writing _previous._layer._count.”);

for (std::size_t prevLayer.i = 0; prevLayer_i < layer.
— getPreviousLayerCount (); prevLayer_i++)
{

u_output = KUtilities:: UInt64:: getLittleEndian (layer.
— getPreviousLayer (prevLayer_i).getNetworkIndex());
fNum. write ((charx)&u_output, sizeof (u_output));
if (!MfNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32::saveLayer (
— ostream &fNum, .const .MergeLayer32 &layer ) ]:.”
"Error.writing _previous._layer.index.”);
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s_output = KUtilities::Int32:: getLittleEndian (layer.
— getActivationFunction ().getID());
fNum. write ((char*)&s_output, sizeof(s_output));
if ('fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32::saveLayer (
— ostream _&fNum, _const _MergeLayer32 _&layer)|:.”
"Error_writing_activation._function_ID.”);

layer.getActivationFunction () .Save (fNum, {});

} layer.Save (fNum, {});

void NeuralNetwork :: Network32::saveConvolutionalLayer (std:: ostream &
< fNum, const NeuralNetwork:: Convolutional:: ConvolutionalLayer32 &
< layer) const

std::int32_t s_output;
std::uint64_t u_output;

s_output = KUtilities:: Int32:: getLittleEndian (layer.getLayerType());
fNum. write ((char*)&s_output, sizeof(s_output));
if (!fNum.good())
throw std::runtime_error(” [NeuralNetwork :: Network32 ::
— saveConvolutionalLayer (ostream .&fNum, .const.Convolutional ::
— ConvolutionalLayer32 &layer) ]:.”
"Error_writing._layer _type.”);

u_output = KUtilities :: UInt64:: getLittleEndian (layer.
— getPreviousLayerIndex () );
fNum. write (( char*)&u_output, sizeof (u_output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32 ::
— saveConvolutionalLayer (ostream .&fNum, .const.Convolutional ::
— ConvolutionalLayer32 &layer) ]:.”
"Error.writing _previous._layer.index.”);
s_output = KUtilities:: Int32:: getLittleEndian (layer.
— getActivationFunction ().getID());
fNum. write ((char*)&s_output, sizeof(s_output));
if (!MfNum.good())
throw std::runtime_error (" [NeuralNetwork :: Network32 ::
— saveConvolutionalLayer (ostream .&fNum, _const.Convolutional ::
— ConvolutionalLayer32 _&layer)]:.”
"Error_writing.activation._function._ID.”);

layer.getActivationFunction () .Save (fNum, {});

layer.Save (fNum, {});

212

www.manharaa.com




void NeuralNetwork :: Network32:: saveMaxpoolLayer (std :: ostream & fNum,
— const NeuralNetwork:: Convolutional :: MaxPoolLayer32 & layer) const
{

std::int32_t s_output;
std :: uint64_t u_-output;

s_output = KUtilities::Int32:: getLittleEndian (layer.getLayerType());
fNum. write ((char)&s_output, sizeof(s_output));
if (!MNum.good())
throw std::runtime_error (" [NeuralNetwork :: Network32 ::
— saveMaxpoolLayer (ostream &fNum, .const.Convolutional ::
— MaxPoolLayer32 &layer)]:.”
"Error_writing._layer_type.”);

u_output = KUtilities:: UInt64:: getLittleEndian (layer.
— getPreviousLayerIndex () );
fNum. write ((char*)&u_output, sizeof(u_output));
if (!MfNum.good())
throw std::runtime_error (” [NeuralNetwork :: Network32 ::
— saveMaxpoolLayer (ostream .&fNum, .const.Convolutional ::
— MaxPoolLayer32_&layer) ]:.”
"Error_writing._previous.layer_index.”);

s_output = KUtilities:: Int32:: getLittleEndian (layer.
< getActivationFunction ().getID());
fNum. write ((char*)&s_output, sizeof(s_output));
if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32 ::
— saveMaxpoolLayer (ostream .&fNum, .const.Convolutional ::
— MaxPoolLayer32 &layer)]:.”
"Error.writing _activation_function_ID.”);

layer.getActivationFunction () .Save (fNum, {});

layer.Save (fNum, {});

}

void NeuralNetwork :: Network32:: Save(std :: ostream &fNum, const NetworkKey

{

— &key) const
std::uint64_t u_output;

u_output = KUtilities:: UInt64:: getLittleEndian (this —>VERSION) ;
fNum. write (( char*)&u_output, sizeof(u_output));
if (!fNum.good())
throw std::runtime_error (” |[NeuralNetwork :: Network32:: Save (ostream &
— fNum, .const _NetworkKey . &key) |: .”
"Error_writing._version.”);

u_output = KUtilities :: UInt64:: getLittleEndian (sizeof (float));
fNum. write (( charx)&u_output, sizeof(u_output));
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if (!fNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32:: Save (ostream &
— fNum, .const .NetworkKey . &key) ]: .7
"Error.writing _size_.of_float _numbers.”);
u_output = KUtilities:: UInt64:: getLittleEndian (getLayerCount());
fNum. write (( char*)&u_output, sizeof(u_output));
if (!MfNum.good())
throw std::runtime_error (7 [NeuralNetwork :: Network32:: Save (ostream &
— fNum, _const _NetworkKey _&key) ]: .7
"Error_writing .layer.count.”);

for (std::size_t layer_i = 0; layer_i < getLayerCount(); layer_i++)
{
switch (m_Layers|[layer_i]—>getLayerType())
{
case InputLayer32::LAYERTYPE:
saveLayer (fNum, (const InputLayer32&)«m_Layers|[layer_i]);
break ;

case FullyConnectedLayer32::LAYERTYPE:
saveLayer (fNum, (const FullyConnectedLayer32&)*m_Layers|[layer_i]);
break ;

case Convolutional:: ConvolutionalLayer32 ::LAYER.TYPE:
saveConvolutionalLayer (fNum, (const NeuralNetwork:: Convolutional::
— ConvolutionalLayer32&)*m_Layers[layer_i]);
break;

case Convolutional :: MaxPoolLayer32:: LAYER TYPE:
saveMaxpoolLayer (fNum, (const NeuralNetwork:: Convolutional ::
< MaxPoolLayer32&)*m_Layers[layer_i]) ;
break;

case MergeLayer32::LAYER.TYPE:
saveLayer (fNum, (const NeuralNetwork:: MergeLayer32&)+*m_Layers |
— layer_i]);
break;

default :
throw std::runtime_error (7 [NeuralNetwork :: Network32:: Save (ostream .
— &fNum, _.const _NetworkKey _&key) |: .”
"Invalid _layer_type_detected.”);
break;

}
}
}

std :: shared_ptr<NeuralNetwork :: ActivationFunctions :: IActivationFunction<
— float >>
NeuralNetwork :: Network32:: loadActivationFunction (std :: istream & fNum)
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std :: shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float >> retval;

char buffer [8];

fNum.read (buffer , sizeof(std::int32_t));
if (!fNum.good () || fNum.gcount() < sizeof(std::int32_t))
throw std::runtime_error (” [NeuralNetwork :: Network32 ::
— loadActivationFunction (istream &fNum) |: .7
"Error.reading._activation._function_ID.”);
int iID = KUtilities::Int32:: ToEndian(buffer, true);

switch (iID)
{
case NeuralNetwork:: ActivationFunctions:: ActivationFunctionID ::
— IDENTITY_ID:
retval = std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float >>(
NeuralNetwork :: ActivationFunctions :: Identity32 ::Load (fNum, { }));
break;

case NeuralNetwork:: ActivationFunctions :: ActivationFunctionID :: STEP_ID
—
retval = std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float >>(
NeuralNetwork :: ActivationFunctions:: Step32::Load (fNum, { }));
break;

case NeuralNetwork:: ActivationFunctions:: ActivationFunctionlID ::
— INVERTED_STEP_ID:
retval = std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float >>(
NeuralNetwork :: ActivationFunctions:: InvertedStep32 :: Load (fNum, {

= 1))
break ;

case NeuralNetwork:: ActivationFunctions :: ActivationFunctionID ::
— HYPERBOLIC_TANGENTID:
retval = std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
< TActivationFunction<float >>(
NeuralNetwork :: ActivationFunctions :: HyperbolicTangent32 :: Load ({Num

=, { D)
break;

case NeuralNetwork:: ActivationFunctions:: ActivationFunctionID ::
— SIGMOID_ID:
retval = std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float >>(
NeuralNetwork :: ActivationFunctions :: Sigmoid32:: Load (fNum, { }));
break ;
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case NeuralNetwork:: ActivationFunctions:: ActivationFunctionID :: RELU_ID
—
retval = std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float >>(
NeuralNetwork :: ActivationFunctions::ReLU32:: Load (fNum, { }));
break ;

case NeuralNetwork:: ActivationFunctions:: ActivationFunctionID ::
— SOFTMAXID:
retval = std::shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float >>(
NeuralNetwork :: ActivationFunctions :: Softmax32 :: Load (fNum,
— getMinibatchSize (), { }));
break;

default :
throw std::runtime_error (7 [NeuralNetwork :: Network32 ::
— loadActivationFunction (istream &fNum) |: .7
"Invalid _activation._.function_ID_detected.”);
break;
}

return retval;

}

void NeuralNetwork :: Network32::loadInputLayer (std ::istream & fNum)

{
char buffer [8];

fNum.read (buffer , sizeof(std::uint64_t));
if (!fNum.good () || fNum.gcount() < sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Network32:: loadInputLayer (
— istream &fNum) |: .7

"Error.reading._input.size.”);
std::size_t uilnputSize = KUtilities :: UInt64 :: ToEndian(buffer , true);

this—>CreatelnputLayer (uilnputSize);

}

void NeuralNetwork :: Network32::loadFullyConnectedLayer (std ::istream &

{

< fNum)

std :: shared_ptr<NeuralNetwork:: ActivationFunctions ::
< TActivationFunction<float>> a_f;
char buffer [8];

fNum.read (buffer , sizeof(std::uint64_t));
if (!fNum.good () || fNum.gcount() < sizeof(std::uint64_t))
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throw std::runtime_error (7 [NeuralNetwork :: Network32 ::

— loadFullyConnectedLayer (std ::istream &_fNum) |: .
"Error.reading . number_of_neurons.”);

std::size_t uiNumNeurons = KUtilities :: UInt64 :: ToEndian(buffer , true);

”

fNum.read (buffer , sizeof(std::uint64_t));
if (!fNum.good () || fNum.gcount() < sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Network32 ::
— loadFullyConnectedLayer (std ::istream & fNum) |: .”
"Error.reading._previous._layer.index.”);
std::size_t uiPrevLayerIndex = KUtilities :: Ulnt64 :: ToEndian( buffer ,

— true);
a_f = loadActivationFunction (fNum) ;

std :: shared_ptr<Layer32> pLayer = NeuralNetwork :: FullyConnectedLayer32
— :: Load (fNum,
xthis , uiNumNeurons, xa_f, sxm_Layers[uiPrevLayerIndex],
— m_uiMinibatchSize , {});
addLayer (pLayer) ;

}

void NeuralNetwork :: Network32::loadConvolutionalLayer (std::istream &
— fNum)
{

std :: shared _ptr<NeuralNetwork:: ActivationFunctions ::
< TActivationFunction<float>> a_f;
char buffer [8];

fNum.read (buffer , sizeof(std::uint64_t));
if (!Num.good() || fNum.gcount() < sizeof(std::uint64_t))
throw std::runtime_error (" [NeuralNetwork :: Network32 ::
— loadFullyConnectedLayer (std ::istream &fNum) |: .7
"Error.reading.previous.layer._index.”);
std::size_t uiPrevLayerIndex = KUtilities :: UInt64 :: ToEndian (buffer ,
— true);

a_f = loadActivationFunction (fNum) ;

std :: shared_ptr<Layer32> pLayer = NeuralNetwork :: Convolutional ::
< ConvolutionalLayer32 :: Load (fNum,
*this ,
xa_f, xm_Layers|[uiPrevLayerIndex],
m_uiMinibatchSize, {});
addLayer (pLayer) ;

}

void NeuralNetwork :: Network32::loadMaxpoolLayer (std ::istream & fNum)

{

std :: shared_ptr<NeuralNetwork :: ActivationFunctions ::
— TActivationFunction<float>> a_f;
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char buffer [8];

fNum.read (buffer , sizeof(std::uint64_t));
if (!'fNum.good() || fNum.gcount () < sizeof(std::uint64_t))
throw std::runtime_error (" [NeuralNetwork :: Network32 ::
— loadFullyConnectedLayer (std ::istream &Num) |: "
"Error_reading._previous.layer._index.”);
std::size_t uiPrevLayerIndex = KUtilities:: UInt64 :: ToEndian (buffer ,

— true);
a_f = loadActivationFunction (fNum) ;

std :: shared_ptr<Layer32> pLayer = NeuralNetwork:: Convolutional ::
< MaxPoolLayer32 :: Load ({Num,
xthis , m_uiMinibatchSize ,
xa_f, xm_Layers[uiPrevLayerIndex]|, {});
addLayer (pLayer) ;

}

void NeuralNetwork :: Network32::loadMergeLayer(std ::istream &fNum)

{

std :: shared_ptr<NeuralNetwork:: ActivationFunctions ::
— TActivationFunction<float>> a_f;
char buffer [8];

fNum.read (buffer , sizeof(std::uint64_t));
if (!fNum.good() || fNum.gcount() < sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Network32::loadMergeLayer (
— std::istream &Num) ]: . ”
"Error.reading _.number_of._neurons.”);
std::size_t uiNumlInputs = KUtilities :: UInt64 :: ToEndian (buffer , true);
if (uiNumlInputs <= 0)
throw std::runtime_error (7 [NeuralNetwork :: Network32 ::loadMergeLayer (
— std::istream &Num) |:.”

"Invalid .number.of_neurons.read.”);

fNum.read (buffer , sizeof(std::uint64_t));
if (!fNum.good () || fNum.gcount() < sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Network32::loadMergeLayer (
— std::istream &Num) ]:.”
"Error.reading._previous._layer._count.”);
std::size_t uiPrevLayerCount = KUtilities :: Ulnt64 :: ToEndian ( buffer ,
— true);
if (uiPrevLayerCount <= 0)
throw std::runtime_error (” [NeuralNetwork :: Network32::loadMergeLayer (
— std::istream &fNum) |:.”
"Invalid .previous.layer._count.read.”);

std::size_t uiActualNumlInputs = 0;
std :: vector<std ::shared_ptr<Layer32>> arrLayers (uiPrevLayerCount);
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for (std::size_.t i = 0; i < uiPrevLayerCount; i++)
{

fNum.read (buffer , sizeof (std::uint64_t));

if (!'fNum.good() || fNum.gcount () < sizeof(std::uint64_t))

throw std::runtime_error (7 [NeuralNetwork :: Network32 ::
— loadMergeLayer (std ::istream &fNum) |: .7
"Error_reading._previous._layer_index.”);
std::size_t uiPrevLayerIndex = KUtilities:: UInt64 :: ToEndian ( buffer ,

— true);

if (uiPrevLayerIndex >= getLayerCount())
throw std::out_of_range(” [NeuralNetwork :: Network32::loadMergeLayer
— (std::istream . &Num) ]:.”
"Previous.layer._index_outside_of_range_of_layers.”);

arrLayers|[i] = m_Layers|[uiPrevLayerIndex];
uiActualNumInputs += arrLayers[i]—>getNeuronCount () ;

}

if (uiNumInputs != uiActualNumInputs)
throw std::out_of_range (" [NeuralNetwork :: Network32 :: loadMergeLayer (
— std::istream &fNum) |:.”
”Actual .number_of_inputs._and_number_of_neurons._read_do_not._match.”
= );

a_f = loadActivationFunction (fNum) ;

std :: shared_ptr<Layer32> pLayer = NeuralNetwork :: MergeLayer32:: Load (
— fNum,
xthis , uiNumlInputs, arrLayers.data(), arrLayers.size(),
< m_uiMinibatchSize , {});
addLayer (pLayer) ;

}

void NeuralNetwork :: Network32::Load(std ::istream & fNum, const
< NetworkKey & key)
{

try

{

char buffer [8];
m_Layers. clear () ;

fNum.read (buffer , sizeof (std::uint64_t));
if (!MNum.good () || fNum.gcount() < sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Network32:: Load (istream .
— &fNum, _const._.NetworkKey _&key) |: .7
"Error_reading._layer _count.”);

if (KUtilities :: UInt64 :: ToEndian(buffer , true) != this—>VERSION)
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throw std::runtime_error (7 [NeuralNetwork :: Network32:: Load (istream -
— &fNum, .const .NetworkKey _&key) |: .7
"Invalid .data_version.”);

fNum. read (buffer , sizeof(std::uint64_t));
if (!Num.good() || fNum.gcount() < sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Network32:: Load (istream -
— &fNum, .const .NetworkKey _&key) |: .7
"Error.reading._layer.count.”);
if (KUtilities:: UInt64 :: ToEndian(buffer , true) != sizeof(float))
throw std::runtime_error (7 [NeuralNetwork :: Network32:: Load (istream .
— &fNum, _const _NetworkKey _&key ) |: .7

"Invalid._floating .point._data_.size.”);

fNum.read (buffer , sizeof(std::uint64_t));
if (!fNum.good() || {Num.gcount() < sizeof(std::uint64_t))
throw std::runtime_error (7 [NeuralNetwork :: Network32:: Load (istream .
— &fNum, .const .NetworkKey _&key) |: .7
"Error.reading._layer _count.”);
std::size_t uiNumLayers = KUtilities :: UInt64 :: ToEndian ( buffer , true)
=

for (std::size_t layer_i = 0; layer_-i < uiNumLayers; layer_i++)
{

fNum.read (buffer , sizeof(std::int32_t));

if (!fNum.good() || fNum.gcount () < sizeof(std::int32_t))

throw std::runtime_error (7 [NeuralNetwork :: Network32 :: Load (
— istream &fNum, _const _NetworkKey &key) |: .7
"Error.reading.next.layer_type.”);
int iLayerType = KUtilities::Int32:: ToEndian(buffer , true);

switch (iLayerType)

{

case InputLayer32::LAYERTYPE:
loadInputLayer (fNum) ;
break ;

case FullyConnectedLayer32::LAYERTYPE:
loadFullyConnectedLayer (fNum) ;
break ;

case Convolutional :: ConvolutionalLayer32 ::LAYER TYPE:
loadConvolutionalLayer (fNum) ;
break ;

case Convolutional :: MaxPoolLayer32 :: LAYERTYPE:
loadMaxpoolLayer (fNum) ;
break ;

case MergeLayer32::LAYERTYPE:
loadMergeLayer (fNum) ;
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break ;

default :
throw std::runtime_error (7 [NeuralNetwork :: Network32:: Save (

— ostream &fNum, _const .NetworkKey &key) |: .7
"Invalid_layer_type_detected.”);

break ;
}

}
}
catech (...)

{

m_Layers. clear () ;

throw;

}

}

B.22 File: kneuron.h

#ifndef KFFANNNEURON.CONTAINER_H
#define K FFANNNEURON.CONTAINER_H

#include <vector>
#include <stdexcept>
#include "mkl.h”

#include 7 ksafevector.h”
#include "knnkeys.h”
#include "ktypeutils. h”

namespace NeuralNetwork

{

class Neuron32

{

public:
static const int VERSION = 1;

Neuron32(std :: vector<float > &activation , KUtilities:: atomic_vector<
— float > &biases , std::vector<float> &weighted_inputs,
KUtilities :: atomic_vector<float> &deltas , KUtilities ::
— atomic_vector<float> &weights, std::size_t uiNumWeights,
std::size_t uiLayerIndex, std::size_t uiLayerNeuronCount, std::
— size_t uiMinibatchSize, const NeuronKey &key)
Neuron32(activation , biases, uiLayerIndex, weighted_inputs, deltas
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weights, uiLayerIndex x uiNumWeights, uiNumWeights,
uiLayerIndex , uiLayerNeuronCount, uiMinibatchSize , key)

{1}

Neuron32(std :: vector<float > &activation , KUtilities::atomic_vector<
— float > &biases, std::size_t uiBiasIndex, std::vector<float> &
— weighted_inputs ,

KUtilities :: atomic_vector<float > &deltas ,
KUtilities :: atomic_vector<float > &weights, std::size_t
— uiStartWeight , std::size_-t uiNumWeights,
std::size_t uiLayerIndex, std::size_t uiLayerNeuronCount, std::
— size_t uiMinibatchSize, const NeuronKey &key)
m_activation(activation),
m_biases (biases),
m_uiBiasIndex (uiBiasIndex),
m_weighted_inputs (weighted_inputs),
m_deltas (deltas),
m_deltaWeights (uiNumWeights) ,
m_weights (weights) ,
m_uiStartWeight (uiStartWeight) ,
m_uiNumWeights (uiNumWeights) ,
m_uiLayerIndex (uiLayerIndex) ,
m_uiLayerNeuronCount (uiLayerNeuronCount) ,
m_uiMinibatchSize (uiMinibatchSize) ,
DeltaBias (0.0f),
LearningRate (1.0f),
Regularization (0.0f) ,
FinalMomentum (0.0 f) ,
Momentum (0.0 £) ,
MomentumThreshold (0.0 f)

if (uiStartWeight >= m_weights.size ())
throw std::out_of_range(” Start_weight_index_is_out_of_bounds_of._
— array.of.weights.”);
if (uiStartWeight + uiNumWeights > m_weights. size ())
throw std::out_of_range (" Start_weight_index_plus_number_of_
— weights_falls_out.of_bounds_of_array._of_weights.”);

}

Neuron32(const Neuron32&) = delete;
Neuron32& operator=(const Neuron32&) = delete;

virtual “Neuron32()

{1}

/// <summary>
/// Returns the last activation for this neuron.
/// </summary>
float getActivation(std::size_t sample = 0) const
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return m_activation [sample * m_uiLayerNeuronCount + m_uiLayerIndex
= I;
}

/// <summary>
/// Sets a value for the activation for this neuron.
/// </summary>
void setActivation(float value, std::size_t sample = 0)
{
m_activation [sample * m_uiLayerNeuronCount + m_uiLayerIndex] =
— value;

/// <summary>

/// Returns the value of the bias for this neuron.
/// </summary>

float getBias() const

{

return m_biases [m_uiBiasIndex |;

}

/// <summary>

/// Sets a value for the bias for this neuron.
/// </summary>

void setBias(float value)

{

m_biases.store (m_uiBiasIndex, value);

}

/// <summary>
/// Updates the bias by adding the product of the
/// megative learning rate and the value of the delta bias.
/// </summary>
void UpdateBias(float fInvMinibatchSize = 1.0)
{
m_biases.accumulate (m_uiBiasIndex , —LearningRate * DeltaBias x
— fInvMinibatchSize);

/// <summary>

/// Scales the delta bias by the value of the momentum.
/// </summary>

void ScaleDeltaBias ()

{

ScaleDeltaBias (Momentum) ;

}

/// <summary>
/// Scales the delta bias by the specified value.
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/// </summary>
void ScaleDeltaBias(float scale)

{

DeltaBias *= scale;

}

/// <summary>
/// Returns the last weighted input value for this neuron.
/// </summary>
float getWeightedInput (std::size_t sample = 0) const
{
return m_weighted_inputs[sample * m_uiLayerNeuronCount +
— m_uiLayerIndex];
}

/// <summary>
/// Sets the weighted input value for this mneuron.
/// </summary>
void setWeightedInput(float value, std::size_t sample = 0)
{
m_weighted_inputs [sample x m_uiLayerNeuronCount + m_uiLayerIndex
— = value;

/// <summary>

/// Returns the value of delta for this neuron.
/// </summary>

float getDelta(std::size_t sample = 0) const

{

return m_deltas[sample * m_uiLayerNeuronCount + m_uiLayerIndex ];

}

/// <summary>
/// Sets the value of delta for this neuron.
/// </summary>
void setDelta(float value, std::size_t sample = 0)
{
m_deltas.store (sample % m_uiLayerNeuronCount 4+ m_uiLayerIndex,
— value);

/// <summary>

/// Returns the index of this neuron in its container layer.
/// </summary>

std::size_t getLayerIndex() const

{

return m_uilLayerIndex;
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/// <summary>

/// Returns the number of connections incoming into this neuron.
/// </summary>

std::size_t getConnectionsInCount () const

{

return getWeightCount () ;

}

/// <summary>

/// Returns the number of weights for this neuron’s incoming
— connections.

/// </summary>

std::size_t getWeightCount () const

{

return m_uiNumWeights;

}

/// <summary>
/// Returns the array of delta weights for this neuron.
/// </summary>
const float xgetDeltaWeights() const
{
return (m_deltaWeights.size() > 0 7
m_deltaWeights.data() : nullptr);
}

/// <summary>
/// Returns the array of delta weights for this neuron.
/// </summary>
float xgetDeltaWeights ()
{
return (m-_deltaWeights.size () > 0 ?
m_deltaWeights.data() : nullptr);
}

/// <summary>

/// Scales all the delta weights for this neuron by the momentum.
/// </summary>

void ScaleDeltaWeights ()

{

ScaleDeltaWeights (Momentum) ;

}

/// <summary>

/// Scales all the delta weights for this neuron by the specified
— value.

/// </summary>

void ScaleDeltaWeights(float scale)
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cblas_sscal ((int)getWeightCount (), scale, getDeltaWeights(), 1);
}

/// <summary>

/// Returns an array of constant weights for the incoming
— connections to this neuron.

/// </summary>

const float xgetWeights() const

{
return (m-weights.size () > 0 && m_uiNumWeights > 0 ?
m_weights.data () + m_uiStartWeight : nullptr);

}

/// <summary>
/// Sets weights for the incoming conmnections to this neuron to the
— values
/// specified by the input array.
/// </summary>
void setWeights(const float =xinput)
{
#pragma omp parallel for
for (int i = 0; i < (int)m_uiNumWeights; i++)
setWeight (i, input[i]);
}

/// <summary>

/// Returns the weight of the incoming connection with specified
— index.

/// </summary>

float getWeight (std::size_t index) const

{

return m_weights [m_uiStartWeight + index];

}

/// <summary>

/// Sets the weight of the incoming connection with specified index.
/// </summary>

void setWeight (std::size_t index, float value)

{

m_weights.store (m_uiStartWeight + index, value);

}

/// <summary>

/// Updates the weight of the incoming connection with specified
— index

/// by adding the product of the negative learning rate and the
— value

/// of the corresponding delta weight.

/// </summary>
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void UpdateWeight (std :: size_t index, float fInvMinibatchSize = 1.0,
— float fInvTotalSamples = 1.0)
{

m_weights.linear_transform (m_uiStartWeight + index,
1 — LearningRate * Regularization % flnvTotalSamples,
—LearningRate * m_deltaWeights[index] * fInvMinibatchSize);

}

/// <summary>

/// Updates the weights of all the incoming connection

/// by adding the product of the negative learning rate and the
— value

/// of the corresponding delta weight.

/// </summary>

void UpdateWeights(float fInvMinibatchSize = 1.0, float
— fInvTotalSamples = 1.0)

{

#pragma omp parallel for
for (int i = 0; i < (int)m_uiNumWeights; i++)
UpdateWeight (i, fInvMinibatchSize , fInvTotalSamples);

void setLearningRate(float value)
{
LearningRate = value;
if (LearningRate < MomentumThreshold)
Momentum = FinalMomentum ;
}

void ScaleLearningRate(float scale)

{

setLearningRate (LearningRate x scale);

}

/// <summary>

/// Learning rate for this neuron.
/// </summary>

float LearningRate;

/// <summary>

/// Final momentum for this neuron.
/// </summary>

float FinalMomentum;

/// <summary>

/// Threshold for momentum for this neuron.
/// </summary>

float MomentumThreshold;

/// <summary>

/// Momentum for this neuron.

/// </summary>

float Momentum;
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/// <summary>

/// Regularization parameter for this neuron.
/// </summary>

float Regularization;

/// <summary>

/// Delta bias for this neuron.
/// </summary>

float DeltaBias;

private:
std :: vector<float> &m_activation;
KUtilities :: atomic_vector<float > &m_biases;
std :: size_t m_uiBiasIndex;
std :: vector<float > &m_weighted_inputs;
KUtilities :: atomic_vector<float > &m_deltas;
std :: vector<float > m_deltaWeights;
KUtilities :: atomic_vector<float > &m_weights;
std ::size_t m_uiStartWeight ;
std :: size_t m_uiNumWeights;
std :: size_t m_uiLayerIndex;
std:: size_t m_uiLayerNeuronCount;
std :: size_t m_uiMinibatchSize;

};

typedef Neuron32 Neuron;

}
#endif

B.23 File: knnkeys.h

#ifndef KFFANN_FRIEND KEYS_H
#define K FFANN_FRIEND KEYS_H

namespace NeuralNetwork
{
/// <summary>
/// Defines the friend key for the Network class.
/// </summary>
class NetworkKey

{

friend class Loader32;

NetworkKey (const NetworkKey&) = delete;
NetworkKey& operator =(const NetworkKey&) = delete;

NetworkKey () { }
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};

/// <summary>
/// Defines the friend key for the Layer class.
/// </summary>
class LayerKey

{

friend class Network32;

LayerKey (const LayerKey&) = delete;
LayerKey& operator =(const LayerKey&) = delete;

} LayerKey () { }

/// <summary>

/// Defines the friend key for the Neuron class.
/// </summary>

class NeuronKey

{

friend class Layer32;

NeuronKey (const NeuronKey&) = delete;
NeuronKey& operator =(const NeuronKey&) = delete;

NeuronKey () { }
¥

/// <summary>

/// Defines the friend key for the ActivationFunction class.
/// </summary>

class ActivationFunctionKey

{

friend class Network32;

ActivationFunctionKey (const ActivationFunctionKey&) = delete;
ActivationFunctionKey& operator =(const ActivationFunctionKey&) =
— delete;

ActivationFunctionKey () { }

}s
namespace Convolutional

{

/// <summary>
/// Defines the friend key for the Feature class.

/// </summary>
class FeatureKey
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friend class ConvolutionalLayer32;

FeatureKey (const FeatureKey&) = delete;
FeatureKey& operator =(const FeatureKey&) = delete;

FeatureKey () { }
b
}
}

#endif

B.24 File: kopencl.h

#ifndef K.OPEN_CL_UTILS__H
#define K. OPEN_CL_UTILS__H

#include <cstdint>
#include <cl/cl.hpp>

namespace KNNUtils
{
/// <summary>
/// This class encapsulates OpenCL functions for
/// sparse matrix operations.
/// </summary>
class KBLASOpenCL
{
public:
/// <summary>
/// Initializes OpenCL to be used by this class.
/// </summary>
static void Init(bool bUseDefault = true);

/// <summary>
/// Computes R = A % D, where A is a CSR sparse matrix and D is a
— dense matrix.
/// </summary>
static void sesrmm(float *Result,
uint32_t nColsResult ,
bool bTransposeA ,
const float *A, const uint32_t *col_index_A , const uint32_t =x
— row_ptr_A,
uint32_t nRowsA, uint32_t nColsA
const float #D);

private:
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static const std::string m_sSource;

/// <summary>

/// Initializes the platform.

/// </summary>

static void InitClPlatform (bool bUseDefault);

/// <summary>

/// Initializes the device to be used for computations preferring
/// GPUs over CPUs if any OpenCL—capable GPU is present.

/// </summary>

static bool InitClDevice(bool bUseDefault);

static bool m_blInitialized;

static cl::Platform m_platform;

static std::vector<cl::Device> m_arrDevices;
static cl:: Context m_context;

static cl::CommandQueue m_queue;

static cl::Program m_program;

static cl:: Kernel m_kernel_scsrmm;

static cl:: Kernel m_kernel_scsrmm_t;

}

#endif

B.25 File: kopencl.cpp

#include <iostream>
#include <vector>
#include <string>
#include <cstdlib>
#include <stdexcept>

#define __CL.ENABLE_EXCEPTIONS
#include "kopencl.h”

bool KNNUtils:: KBLASOpenCL:: m_blInitialized = false;
cl::Platform KNNUtils:: KBLASOpenCL:: m_platform ;

std :: vector<cl :: Device> KNNUtils :: KBLASOpenCL:: m_arrDevices;
cl:: Context KNNUtils:: KBLASOpenCL:: m_context ;

¢l :: CommandQueue KNNUtils : : KBLASOpenCL: : m_queue;;

cl::Program KNNUtils :: KBLASOpenCL: : m_program;

cl::Kernel KNNUtils:: KBLASOpenCL:: m_kernel_scsrmm ;
cl::Kernel KNNUtils:: KBLASOpenCL:: m_kernel_scsrmm_t ;
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// OpenCL code: modified from ViennaCL sparse matrix

// multiplication with added optimizations

const std::string KNNUtils:: KBLASOpenCL:: m_sSource =

7 __kernel.void._trans_mat_mult(.__global_const_unsigned._int_x.
— sp-mat_-row_indices ,\n”

we_-global_const._unsigned_int_x_sp_mat_col_indices ,\n”

we_-global_const._float_x_sp_mat_elements ,\n”

"_.__global_const.float_x_.d_mat,\n”

7 _.unsigned._int.d_mat_row_start ,\n”

7 _.unsigned._int.d_mat_col_start ,\n”

7 __unsigned._int._.d_mat_row_inc ,\n”

7 __.unsigned._int .d_mat_col_inc ,\n”

7 _.unsigned._int.d_mat_row_size ,\n”

7 _.unsigned._int.d_mat_col_size ,\n”

7 _.unsigned_int.d_mat_internal_rows ,\n”

7 __unsigned_int.d_mat_internal_cols ,\n”

7 _.__global_float . x.result ,\n”

7 ..unsigned._int _.result_row_start ,\n”

7 _.unsigned_int.result_col_start ,\n”

7 _.unsigned._int.result_row_inc ,\n”

7 __unsigned._int.result_col_inc ,\n”

7 __.unsigned._int _result_row_size ,\n”

7 _.unsigned._int _result_col_size ,\n”

7._..unsigned._int _.result_internal_rows ,\n”

7 _..unsigned._int _result_internal_cols)\n”

’7{\n”

7 _.for_(unsigned._int.row_=_get_group-id (0);._row._<.result_row_size;._row.

— +=_get_num_groups (0))\n”

”uu{\n”

”_...unsigned.int .row_start .=_sp_mat_row_indices [row];\n”

ceocounsigned.oint crow_end .=_sp_mat_row_indices [row+1];\n”

ceooforo(unsigned_int_col_=_get_local_id (0);_col_<_result_col_size;_col
— 4=_get_local_size (0))\n”

”;_“_“_“_4{\11”

”

”

)

”

”

R float .r.=.0;\n”

Volllll for_(unsigned.int _k.=_.row_start; _k.<.row_end;_k++)\n”

T {\n”

VLl unsigned._int._j.=_sp_mat_col_indices [k];\n”

LT float .x_.=_sp_mat_elements [k];\n”

Yl float cy.=cd_mat[.(d-mat_row_start.+.col.x_.d_mat_row_inc).x*.
— d_mat_internal_cols._+.d_mat_col_start +.j.*x.d_mat_col_inc.];\n”

TR roft=_x_%.y;\n”

T }\n”

Tl result [_(result_row_start _+.row_s_result_row_inc)_%_
— result_internal_cols._+.result_col_start_+.colox.result_col_inc.].=
— or;\n”

” ;_“_“_“_4}\11”
” ;_“_4}\n”

” }\n”

” n”

” sn”
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7 __kernel_void _mat_mult(.__global_const_unsigned._int_x_
— sp.-mat_row_indices ,\n”

wo__global_const.unsigned.int_*x_.sp_mat_col_indices ,\n”

co__global_const_float _x_sp_mat_elements ,\n”

w-_-global_const._float_x_.d_-mat,\n”

7 _.unsigned_int .d_mat_row_start ,\n”

7 _.unsigned._int _.d_mat_col_start ,\n”

7 _.unsigned.int .d_mat_row_inc ,\n”

7 _.unsigned.int .d_mat_col_inc ,\n”

7 __unsigned._int.d_mat_row_size ,\n”

7 __unsigned._int.d_mat_col_size ,\n”

7 __unsigned_int.d_mat_internal_rows ,\n”

7_..unsigned._int .d_mat_internal_cols ,\n”

7_.__global_float .x_.result ,\n”

"_.unsigned._int._result_row_start ,\n”

7 _.unsigned_int.result_col_start ,\n”

7 __.unsigned._int_result_row_inc ,\n”

7 _.unsigned._int.result_col_inc ,\n”

7 _.unsigned._int.result_row_size ,\n”

7 _.unsigned._int._result_col_size ,\n”

7 _.unsigned._int._result_internal_rows ,\n”

7 _.unsigned._int._result_internal_cols)\n”

’7{\1,17’

7..for.(unsigned._int._row._=_get_group_id (0);.row.<.result_row_size;._row.

— 4=_get_num_groups (0))\n”

’7uu{\n77

7 ....unsigned_int _trow_start .=_.sp_mat_row_indices [row];\n”

eeccunsigned._int .row_end .=_sp_mat_row_indices [row+1];\n”

coooforo(unsigned.int_.col_.=_.get_local_id (0);.col.<_result_col_size;.col
— A=_get_local_size (0))\n”

”;_“_“_“_4{\11”

7

”

”

)

”

»”

LT float .r.=.0;\n”
R for_(unsigned.int _k.=_row_start; _k.<_.row_end;_k++)\n”
L {\n”
Yoo unsigned.int.j.=_sp_mat_col_indices [k];\n”
Vllllllo float .x_.=_sp_mat_elements [k];\n”
T float cy.=od_mat|[_(d-mat_row_start_+_j_x_.d_mat_row_inc)_*._
— d_mat_internal_cols _+_.d_mat_col_start 4+_col_x_.d_mat_col_inc.];\n”
VLl roA=_x_xoy;\n”
L }\n”
Vil result [o(result_row_start . +.row.s_result_row_inc)._%._
— result_internal_cols_+.result_col_start._+.col_x_result_col_inc.].=
— _r;\n”

” ;_“_“_“_4}\I1”
” l_“_4}\1177
” }\n77

?

void KNNUtils:: KBLASOpenCL:: Init (bool bUseDefault)
{

if (m-_sSource.empty())
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throw std::runtime_error (7 Invalid OpenCL_source_code.”);

InitClPlatform (bUseDefault);
InitClDevice (bUseDefault) ;

m_context = cl:: Context(m_arrDevices[0]) ;

m_queue = cl ::CommandQueue(m_context, m_arrDevices[0]) ;
cl::Program:: Sources source;

source.emplace_back (m_sSource.c_str (), m_sSource.length());

m_program = cl::Program(m_context, source);
m_program . build (m_arrDevices) ;

m_kernel_scsrmm = cl:: Kernel (m_program, “mat mult”);
m_kernel_scsrmm_t = cl:: Kernel (m_program, ~trans mat mult”);
m_blnitialized = true;

}

void KNNUtils : : KBLASOpenCL : : scsrmm (
float =Result,
uint32_t nColsResult ,
bool bTransposeA ,
const float *A, const uint32_t =xcol_index_A , const uint32_t srow_ptr_A
H )
uint32_t nRowsA, uint32_t nColsA
const float =D)

if (!m_bInitialized)
Init (true);

std::size_t sizeRowPtrA = nRowsA + 1;

std::size_t sizeCollndexA = row_ptr_A [nRowsA];
std::size_t sizeA = sizeCollndexA;

uint32_t &naRowsD = (bTransposeA ? nRowsA : nColsA);
uint32_t &nColsD = nColsResult;

uint32_t &nRowsResult = (bTransposeA ? nColsA : nRowsA);
std::size_t sizeResult = nRowsResult * nColsResult;

std::size_t size = ((sizeResult >> 6) + (sizeResult & 63 7 1 : 0)) <<
— 6;

cl:: Buffer dSparseRowPtr_A;

cl:: Buffer dSparseCollndices_A
cl:: Buffer dSparseNNZ_A;

cl :: Buffer dDenseMat_D;
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cl:: Buffer dDenseMat_Result;

dSparseNNZ_A = cl:: Buffer (m_context ,
CLMEMREADONLY | CLMEM_COPYHOSTPTR,
sizeA x sizeof (float),

(voidx)A);

dSparseCollndices_.A = cl:: Buffer (m_context,
CLMEM READONLY | CLMEM.COPY HOSTPTR,
sizeCollndexA x sizeof (uint32_t),
(void«)col_index_A);

dSparseRowPtr_ A = cl:: Buffer (m_context ,
CLMEM READ ONLY | CLMEM.COPY HOST PTR,
sizeRowPtrA x sizeof(uint32_t),
(void*)row_ptr-A);

dDenseMat_ D = cl:: Buffer (m_context ,
CLMEMREAD.ONLY | CLMEM_COPYHOSTPTR,
sizeof (float) * nRowsD * nColsD,

(void %)D) ;

dDenseMat_Result = cl:: Buffer (m_context,
CLMEM WRITE.ONLY, sizeResult * sizeof(float));

cl::Kernel &kernel = (bTransposeA ? m_kernel_scsrmm_t
— m_kernel_scsrmm ) ;

kernel.setArg (0, dSparseRowPtr_A);
kernel.setArg (1, dSparseCollndices_A);
kernel .setArg (2, dSparseNNZ_A);

#define offset 2
kernel .setArg
kernel .setArg
kernel .setArg
kernel .setArg
kernel .setArg
kernel .setArg )
kernel.setArg (11l — offset , nColsD);

)

(5 — offset , dDenseMat_D);

(

(

(

(

E
kernel.setArg(12 — offset , nRowsD

(

(

(

(

(

(

(

5

6 — offset, 0);

7 — offset, 0);

8 — offset, 1);

9 — offset, 1);

10 — offset , nRowsD

kernel.setArg (13 — offset, nColsD);
kernel.setArg(14 — offset , dDenseMat_Result);
kernel .setArg (15 — offset ,
kernel.setArg (16 — offset, 0);
kernel.setArg (17 — offset, 1);
kernel.setArg (18 — offset, 1);
kernel.setArg (19 — offset , nRowsResult);

235

www.manharaa.com



kernel.setArg (20 — offset , nColsResult);
kernel.setArg (21 — offset , nRowsResult);
kernel.setArg (22 — offset, nColsResult);

m_queue . enqueueNDRangeKernel (kernel |
cl :: NDRange() ,
cl :: NDRange( size) ,
cl :: NDRange(64) ) ;

m_queue. enqueueReadBuffer (dDenseMat_Result ,
CL_-TRUE,
0, sizeResult * sizeof(float),
(void %) Result) ;

}

void KNNUtils:: KBLASOpenCL:: InitClPlatform (bool bUseDefault)
{

int iChoice = 0;
std::vector<cl :: Platform> arrPlatforms;

try

cl::Platform:: get(&arrPlatforms);
}
catch (...)

{

throw std::runtime_error (” Could_not.retrieve _OpenCL_platforms._in.
— this_system.”);

}

if (arrPlatforms.size() > 1 && !bUseDefault)

std :: cout << 7 Select_platform:” << std::endl;

for (std::size_.t i = 0; i < arrPlatforms.size(); i++)

{
std::string sPlatformName;
arrPlatforms [i]. getInfo (CLPLATFORMNAME, &sPlatformName) ;
std::cout << "\t7 << i + 1 << 7..7 << sPlatformName << std::endl;

}

std :: cin >> iChoice;

if (iChoice < 1 || iChoice > arrPlatforms.size())
throw std::runtime_error (" Invalid_platform_choice.”);
iChoice ——;

else if (arrPlatforms.empty())
throw std::runtime_error ("No.OpenCL_platforms_detected in_this.
— system.”);

m_platform = arrPlatforms[iChoice ];
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bool KNNUtils:: KBLASOpenCL:: InitClDevice (bool bUseDefault)

{

bool retval = true;
int iChoice = 0;
std :: vector<cl :: Device> arrDevices;

try

{

}
catch (...)

{
}

if (arrDevices.empty())

{

m_platform . getDevices (CLDEVICE.TYPE.GPU, &arrDevices);
arrDevices. clear () ;

retval = false;
try

{
m_platform. getDevices (CLLDEVICE.TYPE.CPU, &arrDevices);

}
catch (...)

{

throw std::runtime_error (" Could._not_find _OpenCL—capable_devices.”)
=
}

}

if (arrDevices.size () > 1 && !bUseDefault)
{
std :: cout << " Select _OpenCL_device:” << std::endl;
for (std::size_t device_.i = 0; device_.i < arrDevices.size();
— device_i++)
{

std :: string sDeviceName;
arrDevices[device_i]. getInfo (CLDEVICENAME, &sDeviceName) ;
std::cout << "\t7 << device_.i + 1 << 7. .7 << sDeviceName << std ::
— endl;
}

std :: cin >> iChoice;

if (iChoice < 1 || iChoice > arrDevices.size())
throw std::runtime_error (7 Invalid_device_choice.”);
iChoice ——;

}

m_arrDevices.resize (1, arrDevices[iChoice]);

return retval;
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B.26 File: ksafevector.h

#ifndef K_UTILITIES_.SAFE_.VECTOR__H
#define K_UTILITIES SAFE_VECTOR__H

#include <vector>
#include <mutex>
#include <memory>
#include <algorithm>
#include <utility >
#include <cstring>
#include <cstdint>
#include <iterator>

namespace KUtilities

{

template <class T> class atomic_vector_iter;

/// <summary>

/]

/// </summary>
template <class T>
class atomic_vector

{

friend class atomic_vector_iter <I'>;
public:

typedef atomic_vector_iter<I> const_iterator;
typedef std:: ptrdiff_t difference_type;
typedef std::intptr_t pointer_type;

typedef std::size_t size_type;

typedef T value_type;

typedef Tx pointer;

typedef const Tx const_pointer;

typedef T& reference;

typedef const T& const_reference;

template <class iterT>
class atomic_vector_iter
{
public:
atomic_vector_iter (atomic_vector<iterT> &v, size_type position)
m_atomic_vector(v), m_position(position) { }

/// <summary>

/// Copy constructor.

/// </summary>

atomic_vector_iter (const atomic_vector_iter <iterT> &src)
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m_atomic_vector (src.m_atomic_vector), m_position(src.m_position)

= {3

friend bool operator==(const atomic_vector_iter<iterT> &lhs, const
< atomic_vector_iter<iterT> &rhs)

if (&lhs == &rhs)

return true;

else
return (&(lhs.m_atomic_vector) = &(rhs.m_atomic_vector)) &&
(lhs . m_position = rhs.m_position);

}

friend bool operator!=(const atomic_vector_iter <iterT> &lhs, const
< atomic_vector_iter <iterT> &rhs)
{

}

const iterT& operator =() const

{
}

atomic_vector_iter<iterT>& operator++()

{

return !(lhs = rhs);

return m_atomic_vector.at(m_position);

++m _position;
return xthis;

}

atomic_vector_iter <iterT> operator++(int)

{
}

private:
size_type m_position;
atomic_vector<iterT> &m_atomic_vector;

return atomic_vector_iter <iterT >(m_atomic_vector, m_position++);

}s

/// <summary>

/// Default constructor. Constructs an empty vector.
/// </summary>

atomic_vector ()

{1}

/// <summary>

/// Copy constructor.

/// </summary>

atomic_vector (const atomic_vector<I> &src)
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reserve (src.capacity ());
resize (src.size());
m_arr = SIC.m_arr;

}

/// <summary>

/// Move constructor.

/// </summary>

atomic_vector (atomic_vector <I> &&src)

{
m_arrMutex = std ::move(src.m_arrMutex) ;
m_arr = std::move(src.m_arr);

}

/// <summary>
/// Move constructor.
/// </summary>
atomic_vector (std:: vector<I> &&src)
{
reserve (src.capacity ());
resize (src.size());
m_arr = std::move(src.m_arr);

}

/// <summary>

/// Fill constructor. Constructs a new vector with the specified
/// number of elements (the elements are default constrcuted).
/// </summary>

atomic_vector (std:: size_t size)

{

if (size > 0)

reserve (size);
resize (size);
}
}

/// <summary>

/// Fill constructor. Constructs a new vector with the specified
/// number of elements (the elements are copy constrcuted).

/// </summary>

atomic_vector(size_type size, const_reference value)

{

if (size > 0)

reserve (size);
resize (size, value);
}
}

atomic_vector (size_type size, const T xarray)
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{
}

atomic_vector (const_pointer start, const_pointer end)

{
}

/// <summary>

/// Range constructor.

/// </summary>

template <class Inputlter>

atomic_vector (Inputlter start, Inputlter end)

{
}

/// <summary>

/// Assignment operator.

/// </summary>

atomic_vector<I>& operator =(const atomic_vector<I> &src)

{

assign (size , array);

assign (start , end);

assign (start , end);

if (this != &src)

reserve (src.capacity ());
resize (src.size());
m_arr = Src.m_arr;

}

return xthis;

}

/// <summary>
/// Assignment operator.
/// </summary>
atomic_vector<I>& operator =(const std::vector<I> &src)
{
reserve (src.capacity ());
resize (src.size());
m_arr = SIC;
return xthis;

}

/// <summary>

/// Move assignment operator.

/// </summary>

atomic_vector<I>& operator= (atomic_vector <I>&& src)

{

if (this != &src)

m_arrMutex = std ::move(src.m_arrMutex) ;
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m_arr = std::move(src.m_arr);

}

return xthis;

}

/// <summary>
/// Move assignment operator.
/// </summary>
atomic_vector <I>& operator= (std::vector<I>&& src)
{
reserve (src.capacity ());
resize (src.size());
m_arr = std::move(src);
return xthis;

/// <summary>

/// Returns an input iterator pointing to the first element in the
— vector.

/// </summary>

const_iterator begin() const

{

return const_iterator (xthis, 0);

}

/// <summary>

/// Returns an input iterator pointing past the last element in the
— vector.

/// </summary>

const_iterator end() const

{

return const_iterator (xthis, size());

}

/// <summary>

/// Returns the number of elements in the vector.
/// </summary>

size_type size() const

{

return m_arr.size () ;

}

/// <summary>

/// Returns the maximum number of elements that the vector can hold.
/// </summary>

size_type max_size() const
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return std::min(m_arr. max_size (), m_arrMutex.max_size());

}

/// <summary>

/// Resizes the container so that it contains n elements.
/// </summary>

void resize (size_type n)

{

size_type old_size = m_arr.size();

m_arr.resize (n);
m_arrMutex. resize (n);

for (size_type i = old_size; i < m_arrMutex.size (); i++)
m_arrMutex[i]. reset (new std::mutex());

}

/// <summary>

/// Resizes the container so that it contains n elements.
/// New elements are initialized to specified value.

/// </summary>

void resize(size_type n, const_reference value)

{

size_type old_size = m_arr.size ();

m_arr.resize (n, val);
m_arrMutex. resize (n);

for (int i = old_size; i < m_arrMutex.size(); i++)
m_arrMutex[i]. reset (new std::mutex());

}

/// <summary>

/// Returns the size of the storage space currently allocated
/// for the vector, expressed in terms of elements.

/// </summary>

size_type capacity () const

{
}

/// <summary>

/// Returns whether the vector is empty (i.e. whether its size is 0)
— .

/// </summary>

bool empty () const

return std::min(m_arr.capacity (), m_arrMutex.capacity ());

return m_arr.empty () ;

}

/// <summary>
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/// Requests that the vector capacity be at least enough to contain
— n elements.

/// </summary>

void reserve(size_type n)

{
m_arr.reserve (n);
m_arrMutex.reserve (n);

}

/// <summary>
/// Requests the container to reduce its capacity to fit its size.
/// </summary>
void shrink_to_fit ()
{
m_arr.shrink_to_fit (n);
m_arrMutex . shrink_to_fit (n);

}

/// <summary>

/// Retrieves the value of the specified element in the vector.
/// </summary>

const_reference operator[](size_type index) const

{
}

/// <summary>

/// Retrieves the value of the specified element in the vector (
— alias of at()).

/// </summary>

const_reference load(size_type index) const

{
}

/// <summary>

/// Retrieves the value of the specified element in the vector.
/// </summary>

const_reference at(size_type index) const

{
}

return m_arr[index ];

return at (index);

return m_arr.at (index);

/// <summary>

/// Sets the value of the specified element in the vector.
/// </summary>

void store(size_type index, const_reference value)

{

std :: unique_lock <std :: mutex> mutexLock (¥m_arrMutex. at (index));
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m_arr [index] = value;

}

/// <summary>

/// Performs a compare and store operation.

/// </summary>

bool compare_store(size_type index, const_reference expected,
< const_reference value)

{

bool retval = false;

std :: unique_lock <std :: mutex> mutexLock (*m_arrMutex. at (index));

if (retval = (std::memcmp(&expected, &m_arr[index], sizeof (
— expected)) = 0))
m_arr [index] = value;

return retval;

}

/// <summary>

/// Performs a compare and exchange operation.

/// </summary>

void compare_xchange(size_type index, reference expected,
< const_reference value, reference out)

{

bool retval = false;

std :: unique_lock <std :: mutex> mutexLock (*m_arrMutex. at (index));
if (retval = (std::memcmp(&expected, &m_arr[index], sizeof (
— expected)) = 0))
m_arr [index] = value;
else
expected = m_arr[index ];

return retval;

}

/// <summary>

/// Atomically performs a linear transformation on the specified
— element in the vector.

/// </summary>

void linear_transform (size_type index, const_reference scale,
— const_reference value)

{

std :: unique_lock <std :: mutex> mutexLock (xm_arrMutex. at (index)) ;
m_arr [index| = scale * m_arr[index]| + value;

}

/// <summary>
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/// Adds value to the specified element in the vector.

/// </summary>

void accumulate(size_type index, const_reference value)

{
std :: unique_lock <std :: mutex> mutexLock (*m_arrMutex. at (index));
m_arr [index] 4= value;

}

/// <summary>

/// Sets the specified element in the vector to the multiplication
— of

/// itself times value.

/// </summary>

void multiply (size_type index, const_reference value)

{
std :: unique_lock <std :: mutex> mutexLock (*xm_arrMutex. at (index));
m_arr [index] %= value;

/// <summary>

/// Retrieves the value of the first element in the vector.
/// </summary>

const_reference front () const

{

return m_arr. front ();

}

/// <summary>

/// Sets the value of the first element in the vector.

/// </summary>

void front_store(const_reference value)

{
std :: unique_lock <std :: mutex> mutexLock (*xm_arrMutex. front ());
m_arr. front () = value;

}

/// <summary>

/// Adds value to the first element in the vector.

/// </summary>

void front_accumulate (const_reference value)

{
std :: unique_lock <std :: mutex> mutexLock (¥m_arrMutex. front () );
m_arr. front () += value;

}

/// <summary>

/// Sets the first element in the vector to the multiplication of
/// itself times value.

/// </summary>

void front_multiply (const_reference value)
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std :: unique_lock <std :: mutex> mutexLock (*xm_arrMutex. front ());
m_arr. front () *= value;

}

/// <summary>

/// Retrieves the value of the last element in the vector.
/// </summary>

const_reference back() const

{

return me_arr.back();

}

/// <summary>

/// Sets the value of the last element in the vector.

/// </summary>

void back_store(const_reference value)

{
std :: unique_lock <std :: mutex> mutexLock (*m_arrMutex . back () ) ;
m_arr.back () = value;

}

/// <summary>

/// Adds value to the last element in the vector.

/// </summary>

void back_accumulate(const_reference value)

{
std :: unique_lock <std :: mutex> mutexLock (*m_arrMutex . back () ) ;
m_arr.back () += value;

}

/// <summary>

/// Sets the last element in the vector to the multiplication of

/// itself times value.

/// </summary>

void back_multiply (const_reference value)

{
std :: unique_lock <std :: mutex> mutexLock (¥ m_arrMutex . back () ) ;
m_arr . back () *= value;

}

/// <summary>

/// Returns a direct pointer to the memory array used internally
/// by the vector to store its owned elements.

/// </summary>

const T xdata() const

{

return m_arr.data();

}

/// <summary>
/// Returns a direct pointer to the memory array used internally
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/// by the vector to store its owned elements.
/// </summary>
T xunsafe_data ()

{

return m_arr.data() ;

}

/// <summary>

/// Assigns new contents to the vector, replacing its
/// contents, and modifying its size accordingly.
/// </summary>
void assign(size_type size, const T xarray)
this—>resize (size);
#pragma omp parallel for
for (size_type i = 0; i < size; ++i)
m_arr[i] = array[i];
}
/// <summary>
/// Assigns new contents to the vector, replacing its
/// contents, and modifying its size accordingly.
/// </summary>
template <class Inputlter>
void assign (Inputlter start, Inputlter end)
this—>resize (std:: distance(start, end));
auto my_it = m_arr.begin () ;
for (Inputlter it = start; it != end; 4++it, ++my_it)
*my_it = xit;
}
/// <summary>
/// Assigns new contents to the vector, replacing its
/// contents, and modifying its size accordingly.
/// </summary>
void assign (const_pointer start, const_pointer end)
{
assign ((size_type)std:: distance(start, end), start);
}
/// <summary>
/// Assigns new contents to the vector, replacing its

/// contents, and modifying its size accordingly.
/// </summary>
void assign(size_type n, const_reference value)

{

this—>resize (n);
m_arr.assign(n, value);
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}

/// <summary>

/// Removes all elements from the vector (which are destroyed),
/// leaving the container with a size of 0.

/// </summary>

void clear ()

m_arr. clear () ;
m_arrMutex . clear () ;

}

/// <summary>
/// Adds a new element at the end of the vector, after its current
/// last element.The content of value is copied to the new element.
/// </summary>
void push_back(const_reference value)
{

std ::shared_ptr<std :: mutex> pmutex(new std::mutex());

std :: unique_lock <std :: mutex> mutexLock (xpmutex) ;

m_arrMutex . push_back (pmutex) ;

m_arr . push_back (value);

}

/// <summary>
/// Removes and destroys the last element in the vector, effectively
/// reducing the container size by one.
/// </summary>
void pop_back ()
{
m_arrMutex . pop_back () ;
m_arr.pop-back () ;

}

protected:
std :: vector<I> m_arr;
std :: vector<std ::shared_ptr<std :: mutex>> m_arrMutex;

b

/// <summary>

/// Assigns new contents to the vector, replacing its current

/// contents, and modifying its size accordingly.

/// </summary>

template<>

inline void atomic_vector<double >::assign (size_type size, const double
< karray)

{

this—>resize (size);
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std ::memcpy(m-_arr.data(), array, size x sizeof(double));

}

/// <summary>

/// Assigns new contents to the vector, replacing its current

/// contents, and modifying its size accordingly.

/// </summary>

template<>

inline void atomic_vector<float >::assign (size_type size, const float =x
< array)

{

this—>resize (size);
std ::memcpy (m_arr.data (), array, size x sizeof(float));

}

/// <summary>

/// Assigns new contents to the vector, replacing its current

/// contents, and modifying its size accordingly.

/// </summary>

template<>

inline void atomic_vector<std::int8_t >::assign(size_type size, const
< std::int8_t xarray)

{

this—>resize (size);
std ::memcpy (m_arr.data (), array, size * sizeof(std::int8_t));

}

/// <summary>

/// Assigns new contents to the vector, replacing its current

/// contents, and modifying its size accordingly.

/// </summary>

template<>

inline void atomic_vector<std::intl6_t >::assign(size_type size, const
— std::intl6_t =xarray)

{

this—>resize (size);
std : :memcpy (m_arr.data (), array, size * sizeof(std::intl6_t));

}

/// <summary>

/// Assigns new contents to the vector, replacing its current

/// contents, and modifying its size accordingly.

/// </summary>

template<>

inline void atomic_vector<std::int32_t >::assign(size_type size, const
< std::int32_t xarray)

{

this—>resize (size);
std ::memcpy (m_arr.data (), array, size * sizeof(std::int32_t));
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/// <summary>

/// Assigns new contents to the vector, replacing its current

/// contents, and modifying its size accordingly.

/// </summary>

template<>

inline void atomic_vector<std::int64_t >::assign(size_type size, const
— std::int64_t =xarray)

{

this—>resize (size);
std ::memcpy (m_arr.data (), array, size * sizeof(std::int64_t));

}

/// <summary>

/// Assigns new contents to the vector, replacing its current

/// contents, and modifying its size accordingly.

/// </summary>

template<>

inline void atomic_vector<std::uint8_t >::assign(size_type size, const
< std::uint8_t xarray)

{

this—>resize (size);
std ::memcpy (m_arr.data (), array, size *x sizeof(std::uint8_t));

}

/// <summary>

/// Assigns new contents to the vector, replacing its current

/// contents, and modifying its size accordingly.

/// </summary>

template<>

inline void atomic_vector<std::uintl6_t >::assign(size_type size, const
< std::uintl6_t =xarray)

{

this—>resize (size);
std ::memcpy (m_arr.data (), array, size *x sizeof(std::uintl6_t));

}

/// <summary>

/// Assigns new contents to the vector, replacing its current

/// contents, and modifying its size accordingly.

/// </summary>

template<>

inline void atomic_vector<std::uint32_t >::assign(size_type size, const
< std::uint32.t =xarray)

{

this—>resize (size);
std ::memcpy(m-_arr.data (), array, size x sizeof(std::uint32_.t));

}

/// <summary>
/// Assigns new contents to the vector, replacing its current
/// contents, and modifying its size accordingly.
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/// </summary>

template<>

inline void atomic_vector<std::uint64_t >::assign(size_type size, const
< std::uint64_t =xarray)

{

this—>resize (size);
std ::memcpy (m_arr.data (), array, size * sizeof(std::uint64_t));

}

/// <summary>

/// Replicates the first small_size elements of the array

/// by copying them to fill up the whole array.

/// </summary>

inline void replicate_array (double * arr, std::size_t small_size, std

< ::size_t array_size)
{
if (arr && small_size < array_size)
{
std:: size_t next_copy_point = small_size;
while (array_size > (next_copy_point << 1) — 1)

{

std : :memepy(arr + next_copy_point, arr, next_copy-point * sizeof
— (double));

next_copy_point <<= 1;

}

if (array.size > next_copy_point)
std ::memepy(arr + next_copy_point, arr, (array_size —
< next_copy-point) % sizeof(double));

}
}

/// <summary>

/// Replicates the first small_size elements of the array

/// by copying them to fill up the whole array.

/// </summary>

inline void replicate_array (float % arr, std::size_t small_size, std::
— size_t array_size)

{

if (arr && small_size < array_size)

std::size_t next_copy_-point = small_size;
while (array._size >(next_copy-point << 1) — 1)

std ::memcpy(arr + next_copy_point, arr, next_copy-point * sizeof
— (float));

next_copy-point <<= 1;
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if (array.size > next_copy_point)
std ::memepy(arr + next_copy_point, arr,
< next_copy-point) % sizeof(float));

}
}
}

#endif

(array_size —

B.27 File: ktrainer.h

#ifndef KFFANN_TRAINER_H
#define K FFANN_.TRAINER_H

#include <ostream>

#include 7 knetwork.h”
#include " kfclayer . h”
#include "kconvlayer. h”
#include "kmaxpoollayer . h”

#include "ktypeutils. h”

namespace NeuralNetwork

{

class Trainer32

{

public:

class IObjectiveFunction

{

public:

IObjectiveFunction ()

{1}

virtual “IObjectiveFunction ()

{1}

IObjectiveFunction (const IObjectiveFunction&) = delete;
IObjectiveFunction& operator=(const IObjectiveFunction&) = delete;

/// <summary>
/// Computes the error value of the objective function
/// based on the input values and the target values.

/// </summary>
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virtual float error(const float xvalues, const float xtarget, std
— ::size_t size) = 0;

/// <summary>
/// Returns the partial derivative of the objective function
/// with respect to the objective function’s input vector’s
/// element index—th.
/// </summary>
virtual void derror(float xresult, const float xvalues, const
— float =xtarget, std::size_t size) = 0;
b

class ITraininglnput
{
public:
virtual void ReadInput(float sinput, std::size_t input_size
float xtarget , std::size_t target_size
std::size_t sample_index) = 0;
virtual std::size_t getNumberOfSamples() = 0;

}s

Trainer32 (Network32 &network, float fInitialLearningRate)
Trainer32 (network, fInitialLearningRate, 0.5, 0.0, 0.0, 0.0)

{1}

Trainer32 (Network32 &network, float fInitialLearningRate , float
— fLearningRateReduction ,

float fMomentumThreshold, float fInitialMomentum , float
< fFinalMomentum )

m_network (network) ,

InitialLearningRate (fInitialLearningRate)

LearningRateReduction (fLearningRateReduction) ,

MomentumThreshold (fMomentumThreshold) ,

InitialMomentum ( fInitialMomentum) ,

FinalMomentum ({fFinalMomentum) ,

RandomizeSamples(true)

{1}

Trainer32 (const Trainer32&) = delete;
Trainer32& operator=(const Trainer32&) = delete;

/// <summary>

/// Train the network for a full epoch.

/// </summary>

float Train(ITrainingInput &training, IObjectiveFunction &objFunc)

{

return Train(training , objFunc, nullptr, 0);

}

/// <summary>
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/// Train the network for a full epoch.

/// </summary>

float Train(ITrainingInput &training, IObjectiveFunction &objFunc,
std ::ostream &log, int iReportAfterPercent)

{

}

virtual float Test(ITrainingInput &testing, std::ostream &log);

return Train(training , objFunc, &log, iReportAfterPercent);

virtual float Backpropagation(const float xinput, const float =
— target, IObjectiveFunction &objFunc);
void PostBackpropagation(std::size_t uiTotalSamples);

/// <summary>

/// Resets the learning rate of all the neurons in the network to
— the

/// value specified by InitialLearningRate member.

/// </summary>

void ResetLearningRate () ;

float InitialLearningRate;
float LearningRateReduction;
float MomentumThreshold;
float InitialMomentum ;

float FinalMomentum;

bool RandomizeSamples;

protected:
/// <summary>
/// Performs the training of the network for a complete epoch.
/// </summary>
virtual float Train(ITrainingInput &training, IObjectiveFunction &
— objFunc,
std ::ostream xlog, int iReportAfterPercent);

private:

std::size_t readMinibatchData(ITrainingInput &training ,
std :: vector<std ::size_t > &sampleOrder
std::size_t uiSamplelndex
float xbufferInput
std::size_t uiSamplelnputSize ,
float xbufferTarget ,
std::size_t uiSampleOutputSize);

std :: vector<float > m_buffer;

Network32 &m_network;
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typedef Trainer32 Trainer;

}

#endif

B.28 File: ktrainer.cpp

#include <iostream>

#include <stdexcept>
#include <cstring>
#include <algorithm>
#include <iterator >
#include <cstdlib>
#include <ostream>
#include <iomanip>
#include <limits>
#include 7"mkl.h”

#include " ktrainer . h”
#include " klayer . h”
#include " kinputlayer . h”
#include 7kconvneuron.h”

#include " ksafevector.h”

std::size_t NeuralNetwork:: Trainer32::readMinibatchData(ITraininglnput &
— training ,
std ::vector<std::size_t> &sampleOrder, std::size_t uiSamplelndex,
float * bufferInput, std::size_t uiSamplelnputSize,
float xbufferTarget, std::size_t uiSampleOutputSize)

std::size_t uiSamplesCount = 0;

while (uiSamplesCount < m_network.getMinibatchSize () &&
uiSamplesCount + uiSampleIndex < sampleOrder. size ())
{
training . ReadInput ( bufferInput 4+ uiSamplesCount * uiSamplelnputSize
— uiSamplelnputSize ,
bufferTarget + uiSamplesCount * uiSampleOutputSize ,
— uiSampleOutputSize ,
sampleOrder [uiSamplesCount + uiSampleIndex]) ;

uiSamplesCount++;

}

return uiSamplesCount ;
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float NeuralNetwork:: Trainer32:: Train(ITrainingInput & training,
< IObjectiveFunction &objFunc,
std :: ostream xlog, int iReportAfterPercent)

{

std :: vector<float > bufferInput;
std :: vector<float > bufferTarget;
std::size_t uiTotalSamples =
training . getNumberOfSamples () — (training.getNumberOfSamples() %
— m_network.getMinibatchSize ());
std :: vector<std ::size_t > sampleOrder (uiTotalSamples);

#pragma omp parallel for
for (int i = 0; i < (int)sampleOrder.size(); i++)
sampleOrder [1] = i
if (RandomizeSamples
for (std::size_t i
{
std::size_t newPosition = std::rand() % sampleOrder.size ();
std ::swap(sampleOrder[i], sampleOrder [newPosition]) ;

}

std :: vector<float> input(m_network.getInputLayer ().
< getActivationsVector ().size());

std :: vector<float > target (m_network.getOutputLayer ().
— getActivationsVector ().size());

?
)

= 0; i < sampleOrder.size(); i++)

if (log)

if (iReportAfterPercent > 100 || iReportAfterPercent <= 0)
iReportAfterPercent = 100;

(xlog) << std::setw(20) << "Progress” << std::setw(20) << 7Ave_Cost”
<< std::endl;

(xlog) << std::setw(20) << "0%” << std::setw(20) << 7Unknown”
<< std::endl;

log—flush () ;

}

int iStrikes = 0;

float fLastErrorAve = std::numeric_limits<float >::max();
float fCurrentError 0.0;

float fCurrentErrorAve = 0.0;

std :: size_t uiReductionsCnt = 0;

std::size_t uilndexThreshold = sampleOrder.size() / 5;

std::size_t uiTotalMinibatches = sampleOrder.size () / m_network.
— getMinibatchSize () ;
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std :: size_t uiMinibatchCnt = 0;

std :: size_t uiSamplelndex = 0;
while (uiSampleIndex < sampleOrder. size ())

if (readMinibatchData (training ,
sampleOrder , uiSamplelndex
input.data(), m_network.getInputLayer ().getNeuronCount (),
target.data (), m-_network.getOutputLayer () .getNeuronCount())
=— m-_network.getMinibatchSize ())

{

fCurrentError 4= Backpropagation (input.data(), target.data(),
< objFunc) ;
PostBackpropagation (uiTotalSamples) ;

}

uiSampleIndex += m_network.getMinibatchSize () ;

uiMinibatchCnt++;
if (uiSampleIndex <= sampleOrder. size ())
fCurrentErrorAve = fCurrentError / uiSamplelndex;
it (log)
if (uiTotalMinibatches > 0 && (uiMinibatchCnt * 100 /
— iReportAfterPercent) % uiTotalMinibatches = 0)

{

(#log) << std::setw(19) << (uiMinibatchCnt * 100) /
— uiTotalMinibatches << "%’ << std::setw(20) <<
— fCurrentErrorAve
<< std::endl;
log—flush () ;
}

}
¥

return fCurrentErrorAve;

}

float NeuralNetwork:: Trainer32:: Test (ITraininglnput & testing , std::
— ostream & log)

{

std::size_t uiTotalSamples = testing.getNumberOfSamples() — (testing.
< getNumberOfSamples () % m_network.getMinibatchSize ());
std::size_t uiTotalMinibatches = uiTotalSamples / m_network.
< getMinibatchSize () ;
std::size_t uiMinibatchCnt = 0;
std::size_t uiNumCorrect;
InputLayer32 &inputLayer = m_network.getInputLayer () ;
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Layer32 &outputLayer = m_network.getOutputLayer () ;

std :: vector<float> input(inputLayer.getActivationsVector().size());
std :: vector<float> target (outputLayer.getActivationsVector ().size());
std:: vector<std::size_t> sampleOrder (uiTotalSamples) ;

#pragma omp parallel for

for (int i = 0; i < (int)sampleOrder.size(); i++)
sampleOrder [i] = i;

log << std::endl << "Test_completion_percent:._0";

log . flush () ;

uiNumCorrect = 0;

for (std::size_t sample_.i = 0; sample_.i < uiTotalSamples; sample_i +=
— m_network.getMinibatchSize ())

{

if (((uiMinibatchCnt 4+ 1) % 10) % uiTotalMinibatches = 0)

{
log << 7,7 << ((uiMinibatchCnt 4+ 1) % 100) / uiTotalMinibatches;
log . flush () ;

}

readMinibatchData (testing , sampleOrder, sample_i,
input.data(), inputLayer.getNeuronCount (),
target.data(), outputLayer.getNeuronCount());

inputLayer.InitializeInput (input.data());

m_network . PropagatePerLayer () ;

for (std::size_-t minibatch_sample_.i = 0; minibatch_sample_i <
— m-_network.getMinibatchSize (); minibatch_sample_i++)
{

const float xactualOutput = outputLayer.getActivations(
< minibatch_sample_i);
std :: size_t maxIndexOutput =
std :: distance (actualOutput, std::max_element(actualOutput,
— actualOutput + outputLayer.getNeuronCount()));
const float xtargetOutput = target.data() + minibatch_sample_i x
— outputLayer.getNeuronCount () ;
std :: size_t maxIndexTarget =
std :: distance (targetOutput, std::max_element(targetOutput,
— targetOutput + outputLayer.getNeuronCount()));

if (maxIndexTarget = maxIndexOutput)
uiNumCorrect++;

}

uiMinibatchCnt++;
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log << "% << std::endl;
log << "Results:” << std::endl;

log << "Correct_ohits:.” << uiNumCorrect << std::endl;
log << "Total_samples:_.” << uiTotalSamples << std::endl;
log << 7Accuracy_(correct):.” << 100.0 % uiNumCorrect / (float)

— uiTotalSamples << "% << std::endl;
log. flush ();

return uiNumCorrect / (float)uiTotalSamples;

}

float NeuralNetwork:: Trainer32:: Backpropagation(const float xinput,
const float xtarget
IObjectiveFunction &objFunc)

{

float retval;

if (linput)

throw std::invalid_argument (”input_cannot_be_null.”);
if (!target)

throw std::invalid_argument (" target _cannot_be_null.”);
if (m-network.getLayerCount () <= 0)

throw std::invalid_argument (" Network_is _empty.”);

m_network. getInputLayer (). Initializelnput (input);
m_network . PropagatePerLayer () ;

Layer32 &outputLayer = m_network.getOutputLayer () ;

retval = 0.0;
#pragma omp parallel for reduction (+:retval)
for (int sample_i = 0; sample_.i < m_network.getMinibatchSize () ;
— sample_i++)
retval 4= objFunc.error (outputLayer.getActivations(sample_i),
target + sample_i * outputLayer.getNeuronCount (),
outputLayer.getNeuronCount () ) ;

m_buffer.resize (outputLayer.getActivationsVector().size())

objFunc. derror (m_buffer.data(), outputLayer.getActivations
< m_buffer.size());

outputLayer.getActivationFunction (). df(outputLayer.getDeltaVector ().
— unsafe_data (), outputLayer.getWeightedInputValues(), m_buffer.
— size());

vsMul ((int ) m_buffer.size (), outputLayer.getDeltaVector().data(),
< m_buffer.data(), outputLayer.getDeltaVector().unsafe_data());

(), target,

for (int 1 = (int)m_network.getLayerCount() — 1; 1 > 0; 1——)
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TrainableLayer32 xtoLayer = (TrainableLayer32x)(m_network.getLayers
= () [1].get());
Layer32 xfromLayer = (toLayer—>getPreviousLayerIndex () < 1 ?
m_network. getLayers () [toLayer—>getPreviousLayerIndex () ].
— get ()
nullptr);

if (toLayer)
toLayer—>Backpropagate (xfromLayer) ;

}

return retval;

}

void NeuralNetwork:: Trainer32:: PostBackpropagation(std :: size_t
— uiTotalSamples)
{

float fInvMinibatchSize, fIlnvTotalSamples;

fInvMinibatchSize = 1.0f / m_network.getMinibatchSize () ;
finvTotalSamples = (uiTotalSamples = 0 ? 1.0f : 1.0f / uiTotalSamples
= );

for (int 1 = 1;
] < m_network.getLayerCount (); 14++)
{

TrainableLayer32 xcurrentLayer = (TrainableLayer32x*)(m_network.
— getLayers()[1l].get());
if (currentLayer)
currentLayer—>PostBackpropagate (fInvMinibatchSize ,
— fInvTotalSamples);

}
}

void NeuralNetwork:: Trainer32:: ResetLearningRate ()

{

#pragma omp parallel for
for (int layer_-i = 0; layer_i < (int)m_network.getLayerCount () ;

— layer_i++)
{

for (std::size_t neuron_i = 0; neuron_i < m_network.getLayers() |
— layer_i]—>getNeuronCount (); neuron_i++)
m_network. getLayers () [layer_i]—>getNeuron(neuron.i).LearningRate =
<~ InitialLearningRate;
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B.29 File: ktypeutils.h

#ifndef K. TYPE_UTILITIES__H
#define K. TYPE_UTILITIES__H

#include <cstdint>
#include <algorithm>

#define REAL_32BITS

namespace NeuralNetwork

{
#ifdef REAL_32BITS

#define real_type float
#else

#define real_type double
#endif

extern bool bUseGPU;
}

namespace KUtilities

{

class BitUtilities

{

public:
static bool _isLittleEndian ()

{

int n = 1;

return x(char=)&m = 1;
}
static void swap4(void #v)
{

char *xin = (charx)v;
char out [4];

out [0] = in [3];
out [1] = in[2];
out [2] = in[1];
out [3] = in[0]
std :: memepy (v,

?
)

out, 4);
}
static void swap8(void *v)
{
char *xin = (charx)v;

char out [8];
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out [0] = in[7];
out[1] = in[6];
out [2] = in[5];
out [3] = in [4];
out [4] = in[3];
out [5] = in[2];
out [6] = in[1];
out [7] = in[0];
std ::memcpy(v, out, 8);
}

/// <summary>

/// Flag that specifies whether the current system is
— or big endian.

/// </summary>

static const bool IsLittleEndian;

b

class Int32

{

public:
std::int32_t Value;
Int32 () Int32(0)
{3

Int32(std::int32_t value)
Value (value)

{1}

Int32(const Int32 &src)
Int32(src.Value)

{1}

operator

{
}

operator

{
}

Int32& operator=(const Int32 &src)

{

std::int32_t () const

return Value;

std::int32_t&()

return Value;

if (&src != this)
this—>Value = src.Value;

return xthis;
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}

Int32& operator=(std::int32_t value)

{

this—>Value = value;

return xthis;

}

static std::size_-t size()

{ return sizeof (std::int32_t);

}

static std::int32_t getLittleEndian(std::int32_t value)
{ std::int32_t result = value;

if (!BitUtilities::IsLittleEndian)

BitUtilities ::swap4(&result);

}

return result;

}

std::int32_t getLittleEndian () const

{

return getLittleEndian (Value);

}

static std::int32_t getBigEndian(std::int32_t value)

{

std::int32_t result = value;
if (BitUtilities ::IsLittleEndian)

BitUtilities ::swap4(&result);

}

return result;

}

std::int32_t getBigEndian() const

{

return getBigEndian () ;

}

static std::int32_t ToEndian(std::int32_t value, bool
— blsLittleEndian)
{

if (BitUtilities ::IsLittleEndian != bIsLittleEndian)
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std:: reverse ((char*)&value , (charx)&value + sizeof (std::int32_t)
)

return value;

}

static std::int32_t ToEndian(const char sbuffer, bool
— bIsLittleEndian)
{

std::int32_t value = *(const std::int32_t«)buffer;

return ToEndian(value, bIsLittleEndian);

}

void set(std::int32_t value, bool bIsLittleEndian)

{
Value = ToEndian(value, blIsLittleEndian);

}
}

class Ulnt32
{

public:
std::uint32_t Value;

UInt32() : Ulnt32(0)
{}

UInt32(std:: uint32_t value)
Value (value)

{1}

UlInt32(const Ulnt32 &src)
Ulnt32(src. Value)

{}
operator std::int32_t() const
{
return Value;
}
operator std::uint32_t&/()
{
return Value;
}
UInt32& operator=(const Ulnt32 &src)
{

if (&src != this)
this—>Value = src.Value;
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return xthis;

}

Ulnt32& operator=(std::uint32_t value)

{

this—>Value = value;

return xthis;

}

static std::size_t size()

{

return sizeof (std::uint32_t);

}

static std::uint32_t getLittleEndian(std::uint32_t value)

{

std::uint32_t result = value;
if (!BitUtilities ::IsLittleEndian)

BitUtilities ::swap4(&result);

}

return result ;

}

void getLittleEndian (std::uint32_t &result) const

{

result = getLittleEndian (Value);

}

std::uint32_t getLittleEndian () const

{

return getLittleEndian (Value);

}

static std::uint32_t getBigEndian(std::uint32_t value)

{

std::uint32_t result = value;
if (BitUtilities ::IsLittleEndian)

{

BitUtilities ::swap4(&result);

}

return result ;

}

void getBigEndian (std:: uint32_t &result) const

{

result = getBigEndian(Value);
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std::uint32_t getBigEndian () const

{
}

static std::uint32_t ToEndian(std::uint32_t value, bool
— bIsLittleEndian)

return getBigEndian (Value);

if (BitUtilities ::IsLittleEndian != bIsLittleEndian)
std::reverse ((charx*)&value, (charx)&value + sizeof (std::uint32_t
= ));

return value;

}

static std::uint32_t ToEndian(const char xbuffer, bool
— blIsLittleEndian)

{
std::uint32_t value = *(const std::uint32_tx)buffer;
return ToEndian(value, bIsLittleEndian);
}
void set(std::uint32_t value, bool bIsLittleEndian)
{
Value = ToEndian(value, blIsLittleEndian);
}
}s
class Ulnt64
{
public:

std ::uint64_t Value;

UInt64 () : Ulnt64(0)
{}

Ulnt64 (std :: uint64_t value)
Value (value)

{1}

Ulnt64 (const Ulnt64 &src)
Ulnt64 (src. Value)

{1}

operator std::int64_t () const

{

return Value;
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operator std::uint64_t&()

{

return Value;

}

Ulnt64& operator=(const Ulnt64 &src)

if (&src != this)
this—>Value = src.Value;

return xthis;

}

UInt64& operator=(std:: uint64_t value)

{

this—>Value = value;

return xthis;

}

static std::size_t size()

{

return sizeof (std::uint64_t);

}

static std::uint64_t getLittleEndian(std::uint64_t value)

{

std::uint64_t result = value;
if (!BitUtilities::IsLittleEndian)

BitUtilities ::swap8(&result);

}

return result ;

}

void getLittleEndian (std::uint64_t &result) const

{

result = getLittleEndian (Value);

}

std::uint64_t getLittleEndian () const

{

return getLittleEndian (Value);

}

static std::uint64_t getBigEndian(std::uint64_t value)

{

std::uint64_t result = value;
if (BitUtilities ::IsLittleEndian)
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}

}

BitUtilities ::swap8(&result);

}
return result ;
}
void getBigEndian(std:: uint64_t &result) const
{
result = getBigEndian (Value);
}
std::uint64_t getBigEndian () counst
{
return getBigEndian (Value);
}

static std::uint64_t ToEndian(std::uint64_t value, bool
— blIsLittleEndian)

if (BitUtilities ::IsLittleEndian != bIsLittleEndian)

std::reverse ((charx)&value, (charx)&value + sizeof(std::uint64_t

= ));

return value;

}

static std::uint64_t ToEndian(const char xbuffer, bool
— blIsLittleEndian)
{

std::uint64_t value = #*(std::uint64_t*)buffer;

return ToEndian(value, bIsLittleEndian);

}

void set(std::uint64_t value, bool bIsLittleEndian)

{
Value = ToEndian(value, bIsLittleEndian);

}

#endif

B.30 File: ktypeutils.cpp

#include 7 ktypeutils.h”

bool NeuralNetwork ::bUseGPU = true;
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const bool KUtilities:: BitUtilities ::IsLittleEndian = BitUtilities ::
— _isLittleEndian ();
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